ECE-320: Linear Control Systems

Homework 7

Due: Thursday January 30 at the beginning of class

1) (Easy) Show that $\sum_{l=-\infty}^{l=n} \delta(l)=u(n)$ and $\sum_{l=-\infty}^{l=n} \delta(l-k)=u(n-k)$
2) (Easy) For impulse response $h(n)=\delta(n)+2 \delta(n-2)+3 \delta(n-3)$ and input $x(n)=\left(\frac{1}{2}\right)^{n-1} u(n-2)$, determine the output $y(n)$ (this should be easy).
3) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$ and input $x(n)=u(n)$, show that the system output is $y(n)=2\left[1-\left(\frac{1}{2}\right)^{n+1}\right] u(n)$
a) by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{k=\infty} x(n-k) h(k)$
b) by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{k=\infty} x(k) h(n-k)$

Note that this is the unit step response of the system.
4) For impulse response $h(n)=\left(\frac{1}{3}\right)^{n-2} u(n-1)$ and input $x(n)=\left(\frac{1}{2}\right)^{n} u(n-1)$, show that the system output is $y(n)=9\left[\left(\frac{1}{2}\right)^{n-1}-\left(\frac{1}{3}\right)^{n-1}\right] u(n-2)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} x(n-k) h(k)$
5) For impulse response $h(n)=\left(\frac{1}{2}\right)^{n-3} u(n-1)$ and input $x(n)=\left(\frac{1}{4}\right)^{n+1} u(n-2)$, show that the system output is $y(n)=\left[\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n-1}\right] u(n-3)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
6) For impulse response $h(n)=\left(\frac{1}{3}\right)^{n+1} u(n-2)$ and input $x(n)=\left(\frac{1}{2}\right)^{n-2} u(n+1)$, show that the system output is $y(n)=\frac{16}{9}\left[\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{3}\right)^{n}\right] u(n-1)$ by evaluating the convolution sum $y(n)=\sum_{k=-\infty}^{\infty} h(n-k) x(k)$
7) For $h(n)=\left(\frac{1}{a}\right)^{n} u(-n)+a^{n} u(n)$ with $|a|<1$, using the two-sided z transform to show that

$$
H(z)=\frac{1}{1-a z}+\frac{1}{1-a z^{-1}}
$$

and the region of convergence is $|a|<|z|<\frac{1}{|a|}$.

