ECE-320: Linear Control Systems
Homework 3
Due: Thursday December 17 at the beginning of class

1) For the following problem, assume we are using the following control system

where the plant is given by

$$
G_{p}(s)=\frac{1}{s^{2}+4 s+29}=\frac{1}{(s+2-5 j)(s+2+5 j)}
$$

For the following controllers, sketch the root locus with arrows showing the direction of travel as k increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the asymptotes (σ_{c}) and the angles of the asymptotes.

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by hand.
a) $G_{c}(s)=k($ proportional (P) controller)
b) $G_{c}(s)=\frac{k}{s}$ (an integral (I) controller)
c) $G_{c}(s)=\frac{k(s+z)}{s}$ (a proportional + integral (PI) controller) Write the centroid σ_{c} as a function of z. For what values of z will the two asymptotes be in the right half plane? (For plotting purposes, assume z is equal to 2.)
d) $G_{c}(s)=k(s+z)$ (a proportional+derivative (PD) controller) (For plotting purposes, assume z is equal to 2.)
e) $G_{c}(s)=\frac{k\left(s+z_{1}\right)\left(s+z_{2}\right)}{s}$ (a proportional+integral+derivative (PID) controller) Sketch this for the case where both zeros are real and then when both zeros are complex conjugates.
f) $G_{c}(s)=\frac{k(s+z)}{(s+p)}$ (a lead controller, $p>z$) Write an expression for σ_{c} as a function of the distance between the pole and the zero, $l=p-z$. What happens to the asymptotes as l gets larger? (For plotting purposes, assume p is 5 and z is 1.)
2) For the following problem, assume we are using the following control system

where the plant is given by

$$
G_{p}(s)=\frac{1}{s+3}
$$

For the following controllers, sketch the root locus with arrows showing the direction of travel as k increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the asymptotes (σ_{c}) and the angles of the asymptotes.

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by hand.
a) $G_{c}(s)=k($ proportional (P) controller)
b) $G_{c}(s)=\frac{k}{s}$ (an integral (I) controller)
c) $G_{c}(s)=\frac{k(s+z)}{s}$ (a proportional + integral (PI) controller) Sketch this for the case when z is equal to 2 and then assume z is equal to 4; there will be two plots.
d) $G_{c}(s)=k(s+z)$ (a proportional+derivative (PD) controller) Sketch this for the case where z is equal to 2 and then assume $\mathrm{z}=4$; there will be two plots.
e) $G_{c}(s)=\frac{k\left(s+z_{1}\right)\left(s+z_{2}\right)}{s}$ (a proportional+integral+derivative (PID) controller) Sketch this for the case where there are zeros are at $-4 \pm 4 j$ and when they are at -6 and -8 ; there will be two plots.

