
  

ECE-320 Lab 4 
PI-D and I-PD Control with Dynamic Prefilters 

 
 
Overview 

 
In this lab you will be controlling the one degree of freedom systems you previously modeled using PI-D and I- 
PD controllers with and without dynamic prefilters. 

 
You will need your Simulink model and the closedloop_driver.m  file for this lab. 

 
Design Specifications: For each of your systems, you should try and adjust your parameters until you have 
achieved the following: 

 
• Settling time less than 1.0 seconds. 
• Steady state error less than 0.1 cm  for a 1 cm step, and less than 0.05 cm for  a 0.5 cm step 
• Percent Overshoot less than 25% 

 
As a start, you should initially limit your gains as follows: 

 
k p ≤ 0.5 
ki ≤ 5 
kd ≤ 0.01 

 

Your memo should include four graphs for each of the 1 dof systems you used (one PI-D and one I-PD 
controller with and without dynamic prefilters.) Be sure to include the values of k p , ki , and kd in the captions 
for each figure. Your memo should compare the difference between the predicted response (from the model) and 
the real response (from the real system) for each of the systems. How does the use of a dynamic prefilter change 
the response? Attach your Matlab driver file closedloop_driver.m 

 
Background:  While PID controllers are very versatile, they have a number of drawbacks. One of the major 
drawbacks is that for a unit step input, the control effort u(t ) can be infinite at the initial time. This is referred 
to as a set-point kick. There are two commonly used configurations of PID controls schemes that utilize a 
different structure, the PI-D and the I-PD controllers. These are a bit more difficult to model using Matlab’s 
sisotool, but it can be done and we get to explore more of sisotool. 
 
 
 
 
 
 
 
 
 
 
 



 
 

The PI-D controller avoids the set-point kick by putting the derivative in the feedback path, while the I-PD 
controller avoids the set-point kick by placing both the derivative and proportional terms in the feedback path. 
Both types of controllers can be implemented using the following Simulink model, which you should construct 
and name appropriately: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the PI-D controller, we have 
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while for the I-PD controller we have 
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Note that for both controllers we continue to use a lowpass filter (with a cutoff of 50 rad/sec) in series with a 
differentiator. 
 
For both of these controllers, if we ignore the prefilter (assume it is unity),  the transfer function from input to 
output is 

 
Y (s) 

= C1 (s)Gp (s) 
R(s)  1 + C2 (s)Gp (s) + C1 (s)Gp (s) 

 
 
 
Next we need to use sisotool to help determine reasonable values for k p , ki , and kd . 



  

When you start sisotool, you need to click on Control Architecture to get the proper configuration. Be sure 
that sisotool uses negative feedback for both loops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Click here to 
change the 

control 
architecture 
until you get 

 
 
 
 
 
 
 
 
 
 
 
Next we need to select the correct architecture. Select the following architecture and be sure that sisotool uses 
negative feedback for both loops. 

 
 
 

 



  

Click on OK and when the previous window appears, select Loop Configuration. 
 
In the block Open-loop configuration for: select Open Loop Output of C1 and select Open for Output of 
Block C2. 

 
In the block Open-loop configuration for: select Open Loop Output of C2 and select Open for Output of 
Block C1. 

 
 
 
The following figures demonstrate what you are to do. Note that this step is not really necessary, but I find it a 
bit less confusing. The controllers in each window may not be exactly what you are expecting, but it is easier to 
visualize this way. 

 
 
 
 
 

 



  

Next, go back to our design window, and select View, then Design Plots Configuration. Then choose to plot 
the Root Locus plot for both Open Loop 1and Open Loop 2, as the following window shows: 

 

 
 
You should now have a design window with two (empty) root locus plots and we are ready to start. 

 
 
For practice, let’s assume our plant is Gp 

 

(s) = 
938.4 

s2  + 1.25s + 329.8 

 
.When we import the plant, we should get a 

design window that looks like the figure on the following page. Each window shows the root locus for the plant 
and  two identical proportional controllers. 
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Let’s initially assume we want to use a PI-D controller.  In this case, for simulation purposes, we have 
C2 (s) = kd s (we won’t worry about the lowpass filter here). We will start off assuming kd  = 0.01 , but this is 
just a guess! To assign this to controller C2, in the design window we select Designs, the Edit Compensator, 
then select C2 in the compensator window, and enter the controller.   
 
Next we’ll enter the PI part of the controller into C1 (s) .  
 

As a starting point, let’s assume
1

0.15( 15)( ) sC s
s

+
= .  If you have done this correctly, you should get the 

following root locus plots:



  

 
 
The step response for this controller configuration is: 

 

 



  

Note that, compared to a normal PID controller, the control effort is not infinite at 0, and actually builds as time 
goes on (like an integral controller). At this point we might want to go back modify our controllers C1 and C2 
to see if we get acceptable performance. Note that we can modify the two controllers (and gains) independently. 

 
Now we’ll assume we want to control the same plant, but this time use an I-PD controller. We first have to 
guess a PD controller. For the systems I tired, I found that the zero should be fairly small, between -1 and -5. As 
a start, we’ll try the following PD  and I controllers 
 

1 2 (1.5( ) , ) 0.01( 1)C s C s s
s

= = +  

 
If you enter these controllers, you should get the following root locus plots: 
 

 
 
The step response for this system is plotted on the following page. Again, you can change the controllers 
independently to try to obtain an acceptable response. 



  

 
 
 
 
 
 
Now we want to design and implement these types of controllers for your systems. You should go through the 
following steps for each of your systems. 

 
Step 1: Set up the 1 dof  systems exactly the way they were when you determined their model parameters. 

 
Step 2: Modify closedloop_driver.m to read in the correct model file and implement the new feedback 
control  structure. In particular, it must now determine C1(s) and C2(s), as well as the prefilter. 

 
Step 3:  Modify the ECP driver file (Model210_Closedloop.mdl) and rename appropriately. You cannot use 
Model210_Closedloop.mdl as before. 

 
Step 4: PI-D Control 

 
• Design a PI-D controller to meet the design specs (you should probably start with the gains you used in 

last weeks labs). Use a constant prefilter (i.e., a number, most likely the number 1). Be sure to observe 
the limits on the other gains. 

 
• Implement the correct gains into closedloop_model.m 

 
• Simulate the system for 1.5 seconds. If the design constrains are not met, or the control effort hits a 

limit, redesign your controller (you might also try a lower input signal) 
 

• Compile the correct closed loop ECP Simulink driver, connect to the system, and run the simulation. 



  

• Use the comparel.m file (or a modification of it) to plot the results of both the simulation and the real 
system on one nice, neatly labeled graph. The results for the torsional systems must be displayed in 
degrees. You need to include this graph in your memo. Be sure to include the values of pk , ik  and dk in 
your memo. 

 

 

• Change the prefilter to cancel the zeros of the closed loop system and still have a steady state error of 
zero. Rerun the simulation, recompile the ECP system, run the ECP system, and compare the predicted 
with the measured response. You also need to include this graph in your memo. Be sure to include the 
values of pk , ik  and dk in your memo.  

 
 

Step 5:  I-PD Control 
 

 
• Design an I-PD controller to meet the design specs. Use a constant  prefilter  (i.e., a number, most likely the 

number 1). Keep the zero of the PD controller small, between -1 and -5, and be sure to observe the limits on 
the other gains. 

 
• Implement the correct gains into closed1oop_mode1.m 

 

 
• Simulate the system for 1.5 seconds. If the design constrains are not met, or the control effort hits a 

limit, redesign your controller (you might also try a lower input signal) 
 

• Compile the correct closed loop ECP Simulink driver, connect to the system, and run the simulation. 
 

 

• Use the comparel.m file (or a modification of it) to plot the results of both the simulation and the real 
system on one nice, neatly labeled graph. The results for the torsional systems must be displayed in 
degrees. You need to include this graph in your memo. Be sure to include the values of pk , ik  and dk in 
your memo. 

 

 
• Change the prefilter to cancel the zeros of the closed loop system and still have a position error of zero. 

 
• Rerun the simulation, recompile the ECP system, run the ECP system, and compare the predicted with the 

measured response. You also need to include this graph in your memo. Be sure to include the values of pk , 

ik  and dk in your memo. 


