ECE-320 Lab 4 PI-D and I-PD Control with Dynamic Prefilters

<u>Overview</u>

In this lab you will be controlling the one degree of freedom systems you previously modeled using PI-D and I-PD controllers with and without dynamic prefilters.

You will need your Simulink model and the closedloop_driver.m file for this lab.

Design Specifications: For each of your systems, you should try and adjust your parameters until you have achieved the following:

- Settling time less than 1.0 seconds.
- Steady state error less than 0.1 cm for a 1 cm step, and less than 0.05 cm for a 0.5 cm step
- Percent Overshoot less than 25%

As a start, you should initially limit your gains as follows:

$$\begin{array}{rrrr} k_p & \leq & 0.5 \\ k_i & \leq & 5 \\ k_d & \leq & 0.01 \end{array}$$

Your memo should include four graphs for each of the 1 dof systems you used (one PI-D and one I-PD controller with and without dynamic prefilters.) Be sure to include the values of k_p , k_i , and k_d in the captions for each figure. Your memo should compare the difference between the predicted response (from the model) and the real response (from the real system) for each of the systems. How does the use of a dynamic prefilter change the response? Attach your Matlab driver file **closedloop_driver.m**

Background: While PID controllers are very versatile, they have a number of drawbacks. One of the major drawbacks is that for a unit step input, the control effort u(t) can be infinite at the initial time. This is referred to as a *set-point kick*. There are two commonly used configurations of PID controls schemes that utilize a different structure, the PI-D and the I-PD controllers. These are a bit more difficult to model using Matlab's *sisotool*, but it can be done and we get to explore more of *sisotool*.

The PI-D controller avoids the set-point kick by putting the derivative in the feedback path, while the I-PD controller avoids the set-point kick by placing both the derivative and proportional terms in the feedback path. Both types of controllers can be implemented using the following Simulink model, which you should construct and name appropriately:

For the PI-D controller, we have

$$C_1(s) = k_p + \frac{k_i}{s}, \quad C_2(s) = \frac{k_d s}{\frac{1}{50}s + 1}$$

while for the I-PD controller we have

$$C_1(s) = \frac{k_i}{s}, \quad C_2(s) = k_p + \frac{k_d s}{\frac{1}{50}s + 1}$$

Note that for both controllers we continue to use a lowpass filter (with a cutoff of 50 rad/sec) in series with a differentiator.

For both of these controllers, if we ignore the prefilter (assume it is unity), the transfer function from input to output is

$$\frac{Y(s)}{R(s)} = \frac{C_1(s)G_p(s)}{1 + C_2(s)G_p(s) + C_1(s)G_p(s)}$$

Next we need to use *sisotool* to help determine reasonable values for k_p , k_i , and k_d .

When you start *sisotool*, you need to click on **Control Architecture** to get the proper configuration. Be sure that *sisotool* uses negative feedback for both loops.

🙀 Control and Estimation Tools	Manager	_ 🗆 🗡			
<u>File Edit H</u> elp					
ы сч 📙 着					
Workspace	Architecture Compensator Editor Graphical Tuning Analysis Plots Automated Tuning				
E Design History	Current Architecture:				
	Control Architecture Modify architecture, labels and feedback signs.				
	Loop Configuration Configure Loop openings for multi-loop design.				
	System Data Import data for compensators				
	Sample Time Conversion Change the sample time of the design.	Click here to			
		change the			
		architecture			
	L	until you get			
	Show Architecture Store Design Help				
		A			
		-			
Redo		1.			

Next we need to select the correct architecture. Select the following architecture and be sure that *sisotool* uses negative feedback for both loops.

Click on OK and when the previous window appears, select Loop Configuration.

In the block Open-loop configuration for: select **Open Loop Output of C1** and select **Open** for **Output of Block C2**.

In the block Open-loop configuration for: select **Open Loop Output of C2** and select **Open** for **Output of Block C1**.

The following figures demonstrate what you are to do. Note that this step is not really necessary, but I find it a bit less confusing. The controllers in each window may not be exactly what you are expecting, but it is easier to visualize this way.

🙀 Open-Loop Configuratior	n Dialog	×
Open-loop configuration for:	Open Loop - Output of C1	-
Pick signal openings for the sel	ected open-loop.	
Open	Output of Block	
✓ C2		
	Highlight Fac	dback loop
		abackioop
	OK Cancel	Help

🙀 Open-Loop Configuratior	Dialog >	(
Open-loop configuration for:	Open Loop - Output of C2	
Pick signal openings for the sel	ected open-loop.	
Open	Output of Block	
	Highlight feedback loop	
	OK Cancel Help	

Next, go back to our design window, and select **View**, then **Design Plots Configuration**. Then choose to plot the **Root Locus** plot for both **Open Loop 1** and **Open Loop 2**, as the following window shows:

Control and Estimation Tools	Manager		
<u> </u>			
📣 Workspace	Architecture Compensator B	ditor Graphical Tuning Analysis Plots Automated Tuning	
SISO Design Task	Design plots configuration		
E	Plot	Available Open/Closed Loop to Tune	Plot Type
	Plot 1	Open Loop 1	Root Locus
	Plot 2	Open Loop 2	Root Locus 🔹
	Plot 3	Open Loop 1	None 💌
	Plot 4	Open Loop 1	None 🔹
	Plot 5	Open Loop 1	None
	Diat 6	Open Loop 1	None
	Summary of available Open/	Closed loops to tune:	
	Loop Name	Loop Description	
	Open Loop 1	Open Loop - Output of C1	
	Open Loop 2	Open Loop - Output of C2	
	5	elect New Open/Closed Loop to Tune Show Design	Plot
		Show Architecture Store Design Help	1
]
			A
) SISO Design Task Node.			

You should now have a design window with two (empty) root locus plots and we are ready to start.

For practice, let's assume our plant is $G_p(s) = \frac{938.4}{s^2 + 1.25s + 329.8}$. When we import the plant, we should get a design window that looks like the figure on the following page. Each window shows the root locus for the plant and two identical proportional controllers.

Let's initially assume we want to use a PI-D controller. In this case, for simulation purposes, we have $C_2(s) = k_d s$ (we won't worry about the lowpass filter here). We will start off assuming $k_d = 0.01$, but this is just a guess! To assign this to controller C2, in the design window we select **Designs**, the **Edit Compensator**, then select **C2** in the compensator window, and enter the controller.

Next we'll enter the PI part of the controller into $C_1(s)$.

As a starting point, let's assume $C_1(s) = \frac{0.15(s+15)}{s}$. If you have done this correctly, you should get the following root locus plots:

The step response for this controller configuration is:

Note that, compared to a normal PID controller, the control effort is not infinite at 0, and actually builds as time goes on (like an integral controller). At this point we might want to go back modify our controllers C1 and C2 to see if we get acceptable performance. Note that we can modify the two controllers (and gains) independently.

Now we'll assume we want to control the same plant, but this time use an I-PD controller. We first have to guess a PD controller. For the systems I tired, I found that the zero should be fairly small, between -1 and -5. As a start, we'll try the following PD and I controllers

$$C_1(s) = \frac{1.5}{s}, \quad C_2(s) = 0.01(s+1)$$

If you enter these controllers, you should get the following root locus plots:

The step response for this system is plotted on the following page. Again, you can change the controllers independently to try to obtain an acceptable response.

Now we want to design and implement these types of controllers for your systems. You should go through the following steps for each of your systems.

<u>Step 1</u>: Set up the 1 dof systems exactly the way they were when you determined their model parameters.

Step 2: Modify **closedloop_driver.m** to read in the correct model file and implement the new feedback control structure. In particular, it must now determine C1(s) and C2(s), as well as the prefilter.

<u>Step 3:</u> Modify the ECP driver file (**Model210_Closedloop.mdl**) and rename appropriately. You cannot use **Model210_Closedloop.mdl** as before.

Step 4: PI-D Control

- Design a PI-D controller to meet the design specs (you should probably start with the gains you used in last weeks labs). Use a **constant prefilter** (i.e., a number, most likely the number 1). Be sure to observe the limits on the other gains.
- Implement the correct gains into closedloop_model.m
- Simulate the system for 1.5 seconds. If the design constrains are not met, or the control effort hits a limit, redesign your controller (you might also try a lower input signal)
- Compile the correct closed loop ECP Simulink driver, connect to the system, and run the simulation.

- Use the **comparel.m** file (or a modification of it) to plot the results of both the simulation and the real system on one nice, neatly labeled graph. The results for the torsional systems must be displayed in degrees. You need to include this graph in your memo. *Be sure to include the values of k_p*, k_i and k_d in your memo.
- Change the prefilter to cancel the zeros of the closed loop system and still have a steady state error of zero. Rerun the simulation, recompile the ECP system, run the ECP system, and compare the predicted with the measured response. You also need to include this graph in your memo. *Be sure to include the values of k_n*, *k_i* and *k_d* in your memo.

Step 5: I-PD Control

- Design an I-PD controller to meet the design specs. Use a **constant prefilter** (i.e., a number, most likely the number 1). Keep the zero of the PD controller small, between -1 and -5, and be sure to observe the limits on the other gains.
- Implement the correct gains into closed100p_mode1.m
- Simulate the system for 1.5 seconds. If the design constrains are not met, or the control effort hits a limit, redesign your controller (you might also try a lower input signal)
- Compile the correct closed loop ECP Simulink driver, connect to the system, and run the simulation.
- Use the **comparel.m** file (or a modification of it) to plot the results of both the simulation and the real system on one nice, neatly labeled graph. The results for the torsional systems must be displayed in degrees. You need to include this graph in your memo. *Be sure to include the values of k_p, k_i and k_d in your memo.*
- Change the prefilter to cancel the zeros of the closed loop system and still have a position error of zero.
- Rerun the simulation, recompile the ECP system, run the ECP system, and compare the predicted with the measured response. You also need to include this graph in your memo. *Be sure to include the values of k_p*,

 k_i and k_d in your memo.