$\qquad$
$\qquad$

## Quiz \#7

1) Consider the following control system with plant $G_{p}(s)=\frac{1}{s+1}$ and PI controller $G_{c}(s)=\frac{k(s+z)}{s}$


Using the Routh array, we can conclude which of the following:
a) $k>0$
b) $k z>0$
c) $k>0$ and $k z>0$
d) $k>-1$ and $k z>0$
e) none of these
2) Assuming we have a characteristic equation that leads to the following Routh array:

| $s^{4}$ | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| $s^{3}$ | 1 | 2 |  |
| $s^{2}$ | 0 | 1 |  |
| $s^{1}$ |  |  |  |
| $s^{0}$ |  |  |  |

Is this system stable? a) yes b) no $\quad$ c) I don't really care
$\qquad$
$\qquad$
3) For the $2 x 2$ matrix $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the inverse of this matrix, $P^{-1}$, is which of the following:
a) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
b) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
c) $P^{-1}=\frac{1}{a d+b c}\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
d) $P^{-1}=\frac{1}{a d+b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
e) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ f) none of these
4) For the following state variable model

$$
\begin{aligned}
& \dot{q}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] q(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] q(t)
\end{aligned}
$$

The poles of the system are at
a) - 1 and -3
b) -2 and -2
c) 1 and 3
d) 0 and 1
e) 2 and 2
5) For the following state variable model

$$
\begin{aligned}
& \dot{q}(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] q(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] q(t)
\end{aligned}
$$

The poles of the system are at
a) - 1 and -2
b) -1 and -1
c) 1 and 3 d) 0 and 1
e) 1 and 2

