For problems 1-3, consider a closed loop system with transfer function

$$G_0(s) = \frac{s+a}{s^2 + bs + k}$$

1) The sensitivity to variations in k, $S_k^{G_0}(s)$, is

a)
$$\frac{k}{s^2 + bs + k}$$
 b) $\frac{-k}{s^2 + bs + k}$ c) 1 d) $\frac{k}{s + a} - \frac{k}{s^2 + bs + k}$ e) none of these

2) The sensitivity to variations in b, $S_b^{G_0}(s)$, is

a)
$$\frac{-b}{s^2 + bs + k}$$
 b) $\frac{-bs}{s^2 + bs + k}$ c) 1 d) $\frac{b}{s + a} - \frac{bs}{s^2 + bs + k}$ e) none of thes

3) The sensitivity to variations in a, $S_a^{G_0}(s)$, is

a)
$$\frac{a}{s^2 + bs + k}$$
 b) $\frac{-a}{s^2 + bs + k}$ c) 1) d) $\frac{a}{s + a}$ e) none of these

4) Assume we compute the sensitivity of a system with nominal value a = 4 to be

$$S_a^{G_0}(s) = \frac{1}{s+a}$$

For what frequencies will the sensitivity function be less than $\frac{1}{\sqrt{32}}$?

a) $\omega < 4 \text{ rad/sec } b)$ $\omega > 4 \text{ rad/sec } c)$ $\omega > 16 \text{ rad/sec } d)$ $\omega < 16 \text{ rad/sec } e)$ none of these

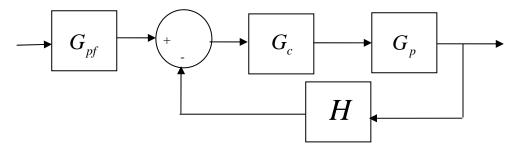
5) Assume we compute the sensitivity of a system with nominal value a=3

to be

$$S_a^{G_0}(s) = \frac{s+2}{s+1+a}$$

For what frequencies will the sensitivity function be greater than $\sqrt{\frac{10}{16}}$?

a) ω < 4 rad/sec b) ω > 4 rad/sec c) ω > 16 rad/sec d) ω < 16 rad/sec e) none of these Problems 6-9 refer to the following system

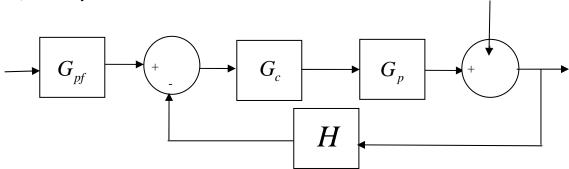


- 6) To reduce the sensitivity of the closed loop transfer function variations in the plant $\,G_{\scriptscriptstyle p}\,$, we should
- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make G_{nf} large d) do nothing, we cannot change the sensitivity
- 7) To reduce the sensitivity of the closed loop transfer function to variations in the prefilter $G_{\it pf}$, we should
- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make $G_{\it pf}$ small d) do nothing, we cannot change the sensitivity
- 8) To reduce the sensitivity of the closed loop transfer function to variations in the controller G_c we should
- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make $|H(j\omega)|$ large d) do nothing, we cannot change the sensitivity

9) To reduce the sensitivity of the closed loop transfer function to variations in the sensor ${\cal H}$, we should

- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make $G_{\it pf}$ large d) do nothing, we cannot change the sensitivity

10) For the system below

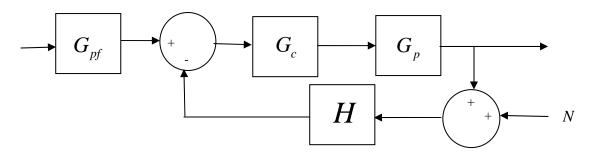


D

to reduce the effects of the external disturbance D on the system output, we should

- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make G_{pf} large d) do nothing, we cannot change the sensitivity

11) For the system below



to reduce the effects of sensor noise $\,N$ on the closed loop system , we should

- a) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ large b) make $|G_c(j\omega)G_p(j\omega)H(j\omega)|$ small
- c) make $|H(j\omega)|$ large d) do nothing, we cannot change the sensitivity

- 12) Consider the characteristic equation $\Delta(s) = s^3 + ks^2 + 2s + 3$. Using the Routh-Hurwitz array, we can determine the system is stable for
- a) all k > 0 b) no value of k c) 0 < k < 1.5 d) k > 1.5

- 13) Consider the characteristic equation $\Delta(s) = 4s^4 + 3s^3 + ks^2 + s + 3$. Using the Routh-Hurwitz array, we can determine the system is stable for
- a) all k > 0 b) no value of k c) k > 31/3 d) k > 4/3

Problems 14-17 refer to a characteristic equation that leads to the following Routh array

- **14**) One of the factors of $\Delta(s)$ is
- a) $s^4 + 3s^3 + 2s$ b) $s^3 + 3s^2 + 2s$ c) $s^5 + 3s^3 + 2s$ d) none of these
- 15) We should replace the row of zeros with which of the following rows
- a) 1 3 b) 4 3 c) 4 6 d) none of these
- **16**) The value of α is a) 1 b) 0 c) 9/2 d) 3/2 e) none of these
- 17) The value of β is a) 0 b) 1 c) 2 d) 3 e) none of these