ECE-320, Practice Quiz \#6

For problems 1-3 , consider a closed loop system with transfer function

$$
G_{0}(s)=\frac{s+a}{s^{2}+b s+k}
$$

1) The sensitivity to variations in $k, S_{k}^{G_{0}}(s)$, is
a) $\frac{k}{s^{2}+b s+k}$
b) $\frac{-k}{s^{2}+b s+k}$
c) 1
d) $\frac{k}{s+a}-\frac{k}{s^{2}+b s+k}$
e) none of these
2) The sensitivity to variations in $b, S_{b}^{G_{0}}(s)$, is
a) $\frac{-b}{s^{2}+b s+k}$
b) $\frac{-b s}{s^{2}+b s+k}$
c) 1
d) $\frac{b}{s+a}-\frac{b s}{s^{2}+b s+k}$
e) none of thes
3) The sensitivity to variations in $a, S_{a}^{G_{0}}(s)$, is
a) $\frac{a}{s^{2}+b s+k}$
b) $\frac{-a}{s^{2}+b s+k}$
c) 1)
d) $\frac{a}{s+a}$
e) none of these
4) Assume we compute the sensitivity of a system with nominal value $a=4$ to be

$$
S_{a}^{G_{0}}(s)=\frac{1}{s+a}
$$

For what frequencies will the sensitivity function be less than $\frac{1}{\sqrt{32}}$?
a) $\omega<4 \mathrm{rad} / \mathrm{sec}$ b) $\omega>4 \mathrm{rad} / \mathrm{sec}$ c
c) $\omega>16 \mathrm{rad} / \mathrm{sec}$
d) $\omega<16 \mathrm{rad} / \mathrm{sec}$
e) none of these
5) Assume we compute the sensitivity of a system with nominal value $a=3$
to be

$$
S_{a}^{G_{0}}(s)=\frac{s+2}{s+1+a}
$$

For what frequencies will the sensitivity function be less than $\sqrt{\frac{10}{16}}$?
a) $\omega<4 \mathrm{rad} / \mathrm{sec}$ b) $\omega>4 \mathrm{rad} / \mathrm{sec}$
c) $\omega>16 \mathrm{rad} / \mathrm{sec}$
d) $\omega<16 \mathrm{rad} / \mathrm{sec}$
e) none of these

Problems 6-9 refer to the following system

6) To reduce the sensitivity of the closed loop transfer function variations in the plant G_{p}, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large \quad d) do nothing, we cannot change the sensitivity
7) To reduce the sensitivity of the closed loop transfer function to variations in the prefilter $G_{p f}$, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ small
d) do nothing, we cannot change the sensitivity
8) To reduce the sensitivity of the closed loop transfer function to variations in the controller G_{c} we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $|H(j \omega)|$ large
d) do nothing, we cannot change the sensitivity
9) To reduce the sensitivity of the closed loop transfer function to variations in the sensor H, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large
d) do nothing, we cannot change the sensitivity

to reduce the effects of the external disturbance D on the system output, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $G_{p f}$ large
d) do nothing, we cannot change the sensitivity
11) For the system below

to reduce the effects of sensor noise N on the closed loop system, we should
a) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ large
b) make $\left|G_{c}(j \omega) G_{p}(j \omega) H(j \omega)\right|$ small
c) make $|H(j \omega)|$ large
d) do nothing, we cannot change the sensitivity
12) Consider the characteristic equation $\Delta(s)=s^{3}+2 k s^{2}+s+1$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>0$
b) no value of k
c) $0<k<0.5$
d) $k>0.5$
13) Consider the characteristic equation $\Delta(s)=s^{3}+s^{2}+s+2 k$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>0$
b) no value of k
c) $0<k<0.5$
d) $k>0.5$
14) Consider the characteristic equation $\Delta(s)=k s^{3}+s^{2}+s+1$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>1$
b) no value of k
c) $0<k<0.5$
d) $0<k<1$
e) $k>0.5$
15) Consider the characteristic equation $\Delta(s)=s^{4}+3 s^{3}+2 s^{2}+s+k$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>1$
b) no value of k
c) $0<k<5 / 9$
d) $k>5 / 9$
e) all $k>0$

Answers: 1-b, 2-b, 3-d, 4-b, 5-a, 6-a, 7-d, 8-a, 9-b, 10-a, 11-b, 12-d, 13-c, 14-d, 15-c,

