
ECE-320: Linear Control Systems 
Homework 7 

 
Due: Thursday January 28, 2009 at the beginning of class 
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a) If the plant input is   and the output is( )u t ( )x t , show that we can represent this system 
with the differential equation 
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b) Assuming we use states 1( ) ( )q t x t= and 2 ( ) ( )q t x t= , and the output is ( )x t , show that 
we can write the state variable description of the system as 
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 Determine the A, B, C and D matrices. 
 
c) Assume we use state variable feedback of the form ( ) ( ) ( )pfu t G r t kq t= − , where is 
the new input to the system, is a prefilter (for controlling the steady state error), and 

is the state variable feedback gain vector. Show that the state variable model for the 
closed loop system is  
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d) Show that the transfer function (matrix) for the closed loop system between input and 
output is given by 
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and if  is zero this simplifies to D
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e) Assume  and . Show that, in order for ( ) 1r t = 0D = lim ( ) 1
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Note that the prefilter gain is a function of the state variable feedback gain! 
 
 
If matrix is given as P
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and the determinant of is given by P ad bc− . This determinant will also give us the 
characteristic polynomial of the system. 
 
2) For each of the systems below: 
 

• determine the transfer function when there is state variable feedback 
• determine if and exist (1k 2k [ ]1 2k k k= ) to allow us to place the closed loop 

poles anywhere. That is, can we make the denominator look like  for 
any  and any . If this is true, the system is said to be controllable. 
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a)  Show that for  
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[ ]0 1 [0]y q= + u  
the closed loop transfer function with state variable feedback is  
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b) Show that for  



0 1 0
0 1 1

q q u
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

[ ]0 1 [0]y q= + u  
 
the closed loop transfer function with state variable feedback is 
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c) Show that for  
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the closed loop transfer function with state variable feedback is 
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Preparation for Lab 7 
 
3) You will be using this code and the following designs in Lab 7, so come prepared! This 
prelab is really pretty mindless, so just follow along 
 
a) The one degree of freedom Simulink model (Basic_1dof_State_Variable_Model.mdl) implements a 
state variable model for a one degree of freedom system. This model uses the Matlab code 
Basic_1dof_State_Variable_Model_Driver.m to drive it. Both of these programs are available on the 
course website. 
 
a) Get the state variable model files for the systems you modeled in lab. Since you will be 
implementing these controllers during lab 9, if you have any clue at all you and your lab 
partner will do different systems! 
 
You will need to have Basic_1dof_State_Variable_Model_Driver.m load the correct 
state model into the system! 
 
b) You need to set the saturation_level to the correct level for the rectilinear (model 210) 
or torsional (model 205) system. Assume we have an input step of 1 cm or 15 degrees (be 
sure to convert to radians!) 
 
c) Design a state variable feedback system using pole placement for either your torsional 
or your rectilinear system. For this method, we basically guess the pole locations and 
simulate the system. To set the location of the closed loop poles, find the part of the code 
that assigns poles to the variable p, and change the elements of p. You will need to 



choose the closed loop pole locations (This is a guess and check sort of thing. The biggest 
problem is making sure the control effort is not too large.) Your resulting design must 
have a settling time of 0.5 seconds or less and must have a percent overshoot of 10% or 
less. Your design should not saturate the system (control effort) and you should use a 
constant prefilter. 
 
d) Run your simulation for 2.0 seconds. Plot both the system output (from 0 to 2 seconds) 
and the control effort (from 0 to 0.2 seconds). Plot the control effort only out to 0.2 
seconds since the control effort is usually largest near the initial time. If your control 
effort reaches its limits, you need to go back and modify your design. Turn in your plot 
with your closed loop poles and your gains (you can just write these on your plot). 
 
e)  An alternative method for determining the feedback gains is based on what is called a linear 
quadratic regulator. The linear quadratic regulator finds the gain K  to minimize 
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For our one degree of freedom systems, is a 2x2 positive definite matrix, and Q R is a scalar. Since we 
will use a diagonal matrix for  and for our system  is a scalar, we can rewrite as Q ( )u t J
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This is very similar to the quadratic optimal control we already discussed in class for transfer functions. 
A large value of R penalizes a large control signal, a large value of will penalize the position of the 
first cart, while a large value of  will penalize a large value of the velocity of the first cart. All of the 

should be zero or positive. 
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 It's easiest to find K  using the following command in Matlab: 1 2( , , ([ ]), )K lqr A B diag q q R=  
 
Try different values of the to find an acceptable controller. Turn in your plot with your 
closed loop poles and your gains (you can just write these on your plot). 

iq

 
Turn in your plots and your code. Be sure your plots are accurately labeled! 

 


