ECE-320,

Practice Quiz \#5

For all of the following problems, assume we are using a two-sided z-transform.

1) The z-transform of a sequence $x(n)$ is defined as
a) $X(z)=\sum_{k=-\infty}^{\infty} x(k) z^{k}$
b) $X(z)=\sum_{k=-\infty}^{\infty} x(k) z^{-k}$
2) The z-transform of the sequence $x(n)=3^{n} u(n)$ is
a) $\frac{z}{3-z}$
b) $\frac{1}{z-3}$
c) $\frac{1}{3-z}$
d) $\frac{z}{z-3}$
e) none of these
3) The z-transform of $x(n)=u(n)$ is
a) $\frac{z}{z-1}$
b) $\frac{1}{z-1}$
c) $\frac{1}{1-z}$
d) $\frac{z}{1-z}$
e) none of these
4) The z-transform of $x(n)=u(n-1)$ is
a) $\frac{z}{z-1}$
b) $\frac{1}{z-1}$
c) $\frac{1}{1-z}$
d) $\frac{z}{1-z}$
e) none of these
5) The z-transform of the sequence $x(n)=\delta(n)$ is
a) 1
b) z
c) z^{-1}
d) 0 e) none of these
6) The z-transform of the sequence $x(n)=\delta(n-1)$ is
a) 1
b) z
c) z^{-1}
d) 0 e) none of these
7) The z-transform of the sequence $x(n)=3^{n-1} u(n)$ is
a) $\frac{3 z}{z-3}$
b) $\frac{1}{3} \frac{z}{z-3}$
c) $\frac{1}{3} \frac{z^{2}}{z-3}$
d) $\frac{3 z^{2}}{z-3}$
e) none of these
8) The z-transform of the sequence $x(n)=3^{n+1} u(n-1)$ is
a) $\frac{3}{z-3}$
b) $\frac{3 z}{z-3}$
c) $\frac{9 z}{z-3}$
d) $\frac{9}{z-3}$
e) none of these
9) The z-transform of the sequence $x(n)=3^{n-1} u(n+1)$ is
a) $\frac{3 z^{2}}{z-3}$
b) $\frac{1}{3} \frac{z}{z-3}$
c) $\frac{1}{9} \frac{z^{2}}{z-3}$
d) $\frac{1}{3} \frac{z^{2}}{z-3}$
e) none of these
10) The z-transform of the sequence $x(n)=2^{n} u(n)$ converges provided
a) $2<|z|$
b) $|z|<2$
11) The z-transform of the sequence $x(n)=\left(\frac{1}{3}\right)^{n} u(n-1)$ converges provided
a) $\frac{1}{3}<|z|$
b) $|z|<\frac{1}{3}$
12) For z-transform $Y(z)=\frac{1}{z-2}$, the inverse z-transform is
a) $y(n)=2^{n} u(n)$
b) $y(n)=2^{n-1} u(n-1)$
c) $y(n)=2^{n+1} u(n+1)$
d) $y(n)=2^{n-1} u(n)$
e) none of these
13) For z-transform $Y(z)=\frac{1}{z-2}$, the inverse z-transform is
a) $y(n)=\frac{1}{2} \delta(n)-\frac{1}{2} 2^{n} u(n)$
b) $y(n)=-\frac{1}{2} \delta(n)+\frac{1}{2} 2^{n} u(n)$
14) Which of the following transfer functions represents an (asymptotically) unstable systems? (circle all of them)
a) $G(z)=\frac{z}{z+0.8}$
b) $G(z)=\frac{z}{z-0.8}$
c) $G(z)=\frac{z}{z+1.2}$
d) $G(z)=\frac{z}{z-1.2}$
15) Which of the following systems will have a smaller settling time?
a) $G(z)=\frac{z}{z-0.9}$
b) $G(z)=\frac{z}{z-0.7}$
c) $G(z)=\frac{z}{z+0.5}$
d) $G(z)=\frac{z}{z+0.1}$
16) Which of the following systems will have a smaller settling time?
a) $G(z)=\frac{1}{(z-0.2+j 0.2)(z-0.2-j 0.2)}$
b) $G(z)=\frac{1}{(z-0.1+j 0.5)(z-0.1-j 0.5)}$
c) $G(z)=\frac{1}{(z+0.5)}$
17) Consider a continuous-time system with plant transfer function $G_{p}(s)=\frac{1}{s+2}$. If we sample the system and then convert it to a discrete-time transfer function, the equivalent discrete-time transfer will be
a) $G_{p}(z)=\frac{z}{z-e^{-2 T}}$
b) $G_{p}(z)=\frac{z}{z+e^{-2 T}}$
c) $G_{p}(z)=\frac{z}{z+e^{+2 T}}$
d) $G_{p}(z)=\frac{z}{z-e^{+2 T}}$
e) none of these
18) Consider a continuous-time stable system with a plant transfer function $G_{p}(s)$ that is modeled as a discrete-time transfer function $G_{p}(z)$ assuming a zero order hold. As the sampling interval T gets smaller, the poles of $G_{p}(z)$
a) move closer to the unit circle (the system becomes less stable)
b) move closer to the origin (the system becomes more stable)
c) do not move

Problems 19 and 20 refer to the following root locus plot for a discrete-time system

19) Are there any values of k (the variable parameter) for which the system is stable?
a) yes b) no c) there is not enough information to answer
20) As k increases, the close loop poles of the system
a) move to the left
b) move to the right
c) do not move at all

Problems 21-23 refer to the following root locus plot for a discrete-time system

21) With the closed loop pole locations shown in the figure, is the closed loop system stable?
a) yes
b) no
c) not enough information
22) Is there any value of k for which the closed loop system is stable?
a) yes b) no c) not enough information
23) Is this a type one system?
a) yes b) no c) not enough information

Problems 24 and 25 refer to the following two root locus plot for a discrete-time system

24) For which system is the settling time likely to be smallest?
a) The system on the left
b) the system on the right
c) the settling time will be the same
25) Is this a type 1 system?
a) yes b) no c) not enough information

Answers: 1b, 2-d, 3-a, 4-b, 5-a, 6-c, 7-b, 8-d, 9-c, 10-a, 11-a, 12-b, 13-b, 14-c, $d, 15-d, 16-a, 17 a, 18-a$, 19-a, 20-a, 21-a, 22-a, 23-a, 24-b, 25-b

