ECE-320, Practice Quiz \#1

Problems 1 and 2 refer to the following transfer function $H(s)=\frac{2 s+1}{(s+1)^{2}+4}$

1) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
2) The poles of the transfer function are
a) $2 \pm j$
b) $-2 \pm j$
c) $-1 \pm 2 \mathrm{j}$
d) $-1 \pm 4 j$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

3) The number of (asymptotically) maginally stable systems is
a) 0
b) 1
c) 2
d) 3
4) The number of (asymptotically) unstable systems is
a) 0
b) 1
c) 2
d) 3
5) Which of the following transfer functions represents a (asymptotically) stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s} \quad G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 6 and 7 refer to the following impulse responses of six different systems

$$
\begin{aligned}
& h_{1}(t)=\left[t e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=\left[2 e^{-2 t}+t^{3} \sin (t)\right] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

6) The number of (asymptitcally) unstable systems is
7) The number of (asymptotically) marginally stable systems is
a) 1
b) 2
c) 3
d) 4
a) 1
b) 2
c) 3
d) 4

Problems 8 and 9 refer to a system with poles at $-2+5 \mathrm{j} .-2-5 \mathrm{j} .-10+\mathrm{j},-10-\mathrm{j}$, and -20
8) The best estimate of the settling time for this system is
a) 2 seconds
b) 0.4 seconds
c) $4 / 5$ seconds
d) 0.2 seconds
9) The dominant pole(s) of this system are
a) $-2+5 j$ and $-2-5 j$
b) $-10+j$ and $-10-j$
c) -20
10) Which of the following transfer functions represents a (asymptotically) stable system?

$$
\begin{array}{lll}
G_{a}(s)=\frac{s-1}{s+1} & G_{b}(s)=\frac{s}{(s+1)} & G_{c}(s)=\frac{s}{s^{2}-1} \\
G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} & G_{e}(s)=\frac{(s-1-j)(s-1+j)}{(s+2)^{2}} & G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}
\end{array}
$$

a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f} d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

For problems 11-15, consider the signal flow graph representation of the following block diagram.

11) The path is a) $1 \quad$ b) G c) H d) $G H \quad$ e) none of these
12) The loop is a) 1
b) G
c) H d) GH
e) none of these
13) The determinant $\left(\begin{array}{llll}\Delta\end{array}\right)$ is a) $1 \quad$ b) $1-G H \quad$ c) $1+G H \quad$ d) none of these
14) The cofactor is
a) 1
b) $G \quad$ c) H
d) $G H$
e) none of these
15) The transfer function is
a) 1
b) G
c) GH
d) $\frac{G}{1-G H}$
e) $\frac{G}{1+G H}$

For problems 16-19, consider the signal flow graph representation of the following block diagram.

16) How many paths are there?
a) 0
b) 1
c) 2
d) $3 \quad$ e) 4
17) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
18) The determinant (Δ) is
a) 1
b) $1-\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
19) The transfer function is a) 1
b) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1+H_{2} H_{3} H_{4}}$ c) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1-H_{2} H_{3} H_{4}}$

For problems 20 - 23 consider the signal flow graph representation of the following block diagram.

20) How many paths are there?
a) 0
b) 1
c) 2
d) 3
e) 4
21) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
22) The determinant (Δ) is
a) 1
b) $1-H_{2} H_{3}-H_{3} H_{4}$
c) $1+H_{2} H_{3}+H_{3} H_{4}$
d) none of these
23) The transfer function is a) 1
b) $\frac{H_{1} H_{2} H_{3}}{1-H_{2} H_{3}-H_{3} H_{4}}$
c) $\frac{H_{1} H_{2} H_{3}}{1+H_{2} H_{3}+H_{3} H_{4}}$

For problems 24-26 consider the following signal flow graph

24) How many paths are there? a) 1 b) 2 c) 3 d) 4
25) How many loops are there?
a) 2
b) 3
c) 4
d) 5
e) 6 f) 7
26) Are any of the cofactors equal to 1 ? a) yes b) no

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, , 11-b, 12-e, 13-c, 14-a, 15-e, 16-c, 17-b, 18-c, 19-b, 20-b, 21-c, 22-c, 23-c, 24-b, 25-d, 26-b

