ECE-320, Practice Quiz #1

Problems 1 and 2 refer to the following transfer function $H(s) = \frac{2s+1}{(s+1)^2+4}$

- 1) For this transfer function, the corresponding impulse response h(t) is composed of which terms?
- a) $e^{-t}\cos(2t), e^{-t}\sin(2t)$ b) $e^{-2t}\cos(t), e^{-2t}\sin(t)$
- c) $e^{-t}\cos(4t), e^{-t}\sin(4t)$ d) $e^{-4t}\cos(t), e^{-4t}\sin(t)$
- 2) The poles of the transfer function are
- a) $2 \pm i$ b) $-2 \pm i$
- c) $-1 \pm 2i$ d) $-1 \pm 4i$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$h_1(t) = [1 + e^{-t}]u(t)$$

$$h_2(t) = e^{-2t}u(t)$$

$$h_3(t) = [2 + \sin(t)]u(t)$$

$$h_{A}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_5(t) = [1 + t + e^{-t}]u(t)$$

$$h_6(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

- 3) The number of (asymptotically) maginally stable systems is a) 0 b) 1 c) 2 d) 3
- 4) The number of (asymptotically) **unstable systems** is
- a) 0 b) 1 c) 2 d) 3

5) Which of the following transfer functions represents a (asymptotically) stable system?

$$G_a(s) = \frac{s-1}{s+1}$$

$$G_b(s) = \frac{1}{s(s+1)}$$

$$G_c(s) = \frac{s}{s^2 - 1}$$

$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)}$$

$$G_e(s) = \frac{(s-1-j)(s-1+j)}{s}$$

$$G_a(s) = \frac{s-1}{s+1} \qquad G_b(s) = \frac{1}{s(s+1)} \qquad G_c(s) = \frac{s}{s^2 - 1}$$

$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)} \qquad G_e(s) = \frac{(s-1-j)(s-1+j)}{s} \qquad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$$

- a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f
- d) only G_d and G_f

e) only G_a and G_d

Problems 6 and 7 refer to the following impulse responses of six different systems

$$h_1(t) = [te^{-t}]u(t)$$

$$h_2(t) = e^{-2t}u(t)$$

$$h_3(t) = [2e^{-2t} + t^3 \sin(t)]u(t)$$

$$h_{\Delta}(t) = [1 - t^3 e^{-0.1t}]u(t)$$

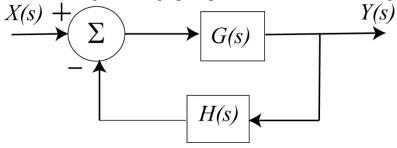
$$h_5(t) = [1 + t + e^{-t}]u(t)$$

$$h_6(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

- **6)** The number of (asymptitcally) <u>unstable</u> systems is
- a) 1 b) 2 c) 3 d) 4
- 7) The number of (asymptotically) marginally stable systems is
- a) 1 b) 2 c) 3 d) 4

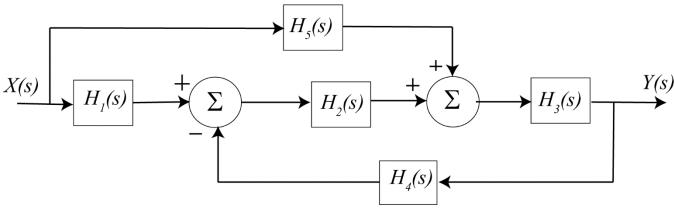
Problems 8 and 9 refer to a system with poles at -2+5j. -2-5j. -10+j, -10-j, and -20

- 8) The best estimate of the **settling time** for this system is
- a) 2 seconds
- b) 0.4 seconds c) 4/5 seconds d) 0.2 seconds

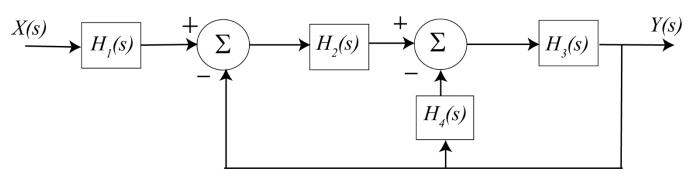

- **9**) The **dominant pole(s)** of this system are a) -2+5j and -2-5j b) -10+j and -10-j c) -20
- 10) Which of the following transfer functions represents a (asymptotically) stable system?

$$G_a(s) = \frac{s-1}{s+1} \qquad G_b(s) = \frac{s}{(s+1)} \qquad G_c(s) = \frac{s}{s^2 - 1}$$

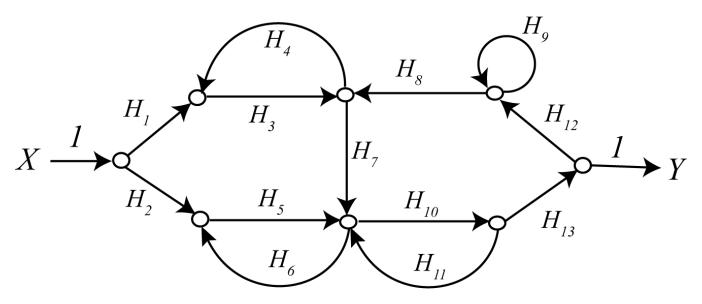
$$G_d(s) = \frac{s+1}{(s+1+j)(s+1-j)} \qquad G_e(s) = \frac{(s-1-j)(s-1+j)}{(s+2)^2} \qquad G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$$


- a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f d) only G_d and G_f
- e) only G_a and G_d

For problems 11-15, consider the signal flow graph representation of the following block diagram.


- 11) The **path** is a) 1 b) G c) H d) GH e) none of these
- **12)** The **loop** is a) 1 b) G c) H d) G e) none of these
- **13**) The **determinant** (Δ) is a) 1 b) 1-GH c) 1+GH d) none of these
- **14)** The **cofactor** is a) 1 b) G c) H d) GH e) none of these
- **15)** The **transfer function** is a) 1 b) G c) GH d) $\frac{G}{1-GH}$ e) $\frac{G}{1+GH}$

For problems 16-19, consider the signal flow graph representation of the following block diagram.


- **16)** How many **paths** are there? a)
- a) 0 b) 1 c) 2 d) 3 e) 4
- **17**) How many **loops** are there?
- a) 0 b) 1 c) 2 d) 3 e) 4
- **18)** The **determinant** (Δ) is
- a) 1 b) $1-H_2H_3H_4$ c) $1+H_2H_3H_4$ d) none of these
- **19)** The **transfer function** is a) 1 b) $\frac{H_3H_5 + H_1H_2H_3}{1 + H_2H_3H_4}$ c) $\frac{H_3H_5 + H_1H_2H_3}{1 H_2H_3H_4}$

For problems 20 – 23 consider the signal flow graph representation of the following block diagram.

- **20)** How many **paths** are there? a)
 - a) 0 b) 1 c) 2 d) 3 e) 4
- 21) How many loops are there?
- a) 0 b) 1 c) 2 d) 3 e) 4
- **22)** The **determinant** (Δ) is
- a) 1 b) $1-H_2H_3-H_3H_4$ c) $1+H_2H_3+H_3H_4$ d) none of these
- **23**) The **transfer function** is a) 1 b) $\frac{H_1H_2H_3}{1-H_2H_3-H_3H_4}$ c) $\frac{H_1H_2H_3}{1+H_2H_3+H_3H_4}$

For problems 24-26 consider the following signal flow graph

- **24)** How many **paths** are there? a) 1 b) 2 c) 3 d) 4
- **25)** How many **loops** are there? a) 2 b) 3 c) 4 d) 5 e) 6 f) 7
- **26)** Are any of the **cofactors** equal to 1? a) yes b) no

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, , 11-b, 12-e, 13-c, 14-a, 15-e, 16-c, 17-b, 18-c, 19-b, 20-b, 21-c, 22-c, 23-c, 24-b, 25-d, 26-b