Due: Friday May 1 at the beginning of class
EXAM 2, Friday May 1

1) For the following two circuits,

show that the state variable descriptions are given by

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{b}}{L} & -\frac{1}{L} \\
\frac{1}{C} & -\frac{1}{R_{a} C}
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{L} \\
\frac{1}{R_{a} C}
\end{array}\right] v_{i n}(t) y(t)=\left[\begin{array}{ll}
R_{B} & 0
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+[0] v_{i n}(t) \\
\frac{d}{d t}\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\frac{R_{a} R_{b}}{L\left(R_{a}+R_{b}\right)} & -\frac{1}{L} \\
\frac{1}{C} & 0
\end{array}\right]\left[\begin{array}{c}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\begin{array}{c}
\frac{R_{b}}{L\left(R_{a}+R_{b}\right)} \\
0
\end{array}\right] v_{i n}(t) y(t)=\left[\begin{array}{ll}
-\frac{R_{a} R_{b}}{R_{a}+R_{b}} & 0
\end{array}\right]\left[\begin{array}{l}
i_{L}(t) \\
v_{c}(t)
\end{array}\right]+\left[\frac{R_{b}}{R_{a}+R_{b}}\right] v_{i n}(t)
\end{gathered}
$$

2) For the following circuit, the state variables are the current through the inductor and the voltage across the capacitor. Determine a state variable model for this system. Specifically, you need to identify the A, B, C, and D matrices/vectors/scalars.

3) For the following circuit, the state variables are the current through the inductor and the voltage across the capacitor. Determine a state variable model for this system. Specifically, you need to identify the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D matrices/vectors/scalars.

4) For the plant $G_{p}(s)=\frac{K}{\frac{1}{\omega_{n}^{2}} s^{2}+\frac{2 \zeta}{\omega_{n}} s+1}$
a) If the plant input is $u(t)$ and the output is $x(t)$, show that we can represent this system with the differential equation

$$
\ddot{x}(t)+2 \zeta \omega_{n} \dot{x}(t)+\omega_{n}^{2} x(t)=K \omega_{n}^{2} u(t)
$$

b) Assuming we use states $q_{1}(t)=x(t)$ and $q_{2}(t)=\dot{x}(t)$, and the output is $x(t)$, show that we can write the state variable description of the system as

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{c}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\omega_{n}^{2} & -2 \zeta \omega_{n}
\end{array}\right]\left[\begin{array}{c}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
K \omega_{n}^{2}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
q_{1}(t) \\
q_{2}(t)
\end{array}\right]+[0] u(t)
\end{aligned}
$$

or

$$
\dot{q}(t)=A q(t)+B u(t) \quad y(t)=C q(t)+D u(t)
$$

Determine the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D matrices.
c) Assume we use state variable feedback of the form $u(t)=G_{p f} r(t)-k q(t)$, where $r(t)$ is the new input to the system, $G_{p f}$ is a prefilter (for controlling the steady state error), and k is the state variable feedback gain vector. Show that the state variable model for the closed loop system is

$$
\begin{aligned}
& \dot{q}(t)=(A-B k) q(t)+\left(B G_{p f}\right) r(t) \\
& y(t)=(C-D k) q(t)+\left(D G_{p f}\right) r(t)
\end{aligned}
$$

or

$$
\begin{aligned}
& \dot{q}(t)=\tilde{A} q(t)+\tilde{B} r(t) \\
& y(t)=\tilde{C} q(t)+\tilde{D} r(t)
\end{aligned}
$$

d) Show that the transfer function (matrix) for the closed loop system between input and output is given by

$$
G(s)=\frac{Y(s)}{R(s)}=(C-D k)(s I-(A-B k))^{-1} B G_{p f}+D G_{p f}
$$

and if D is zero this simplifies to

$$
G(s)=\frac{Y(s)}{R(s)}=C(s I-(A-B k))^{-1} B G_{p f}
$$

e) Assume $r(t)=u(t)$ and $D=0$. Show that, in order for $\lim _{t \rightarrow \infty} y(t)=1$, we must have

$$
G_{p f}=\frac{-1}{C(A-B k)^{-1} B}
$$

Note that the prefilter gain is a function of the state variable feedback gain!

If matrix P is given as

$$
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then

$$
P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

and the determinant of P is given by ad $-b c$. This determinant will also give us the characteristic polynomial of the system.
5) For each of the systems below:

- determine the transfer function when there is state variable feedback
- determine if k_{1} and k_{2} exist ($k=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$) to allow us to place the closed loop poles anywhere. That is, can we make the denominator look like $s^{2}+a_{1} s+a_{0}$ for any a_{1} and any a_{0}. If this is true, the system is said to be controllable.
a) Show that for

$$
\begin{gathered}
\dot{q}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] q+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
0 & 1
\end{array}\right] q+[0] u
\end{gathered}
$$

the closed loop transfer function with state variable feedback is $G(s)=\frac{(s-1) G_{p f}}{(s-1)\left(s-1+k_{2}\right)}$
b) Show that for

$$
\begin{gathered}
\dot{q}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] q+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
0 & 1
\end{array}\right] q+[0] u
\end{gathered}
$$

the closed loop transfer function with state variable feedback is $G(s)=\frac{s G_{p f}}{s^{2}+\left(k_{2}-1\right) s+k_{1}}$
c) Show that for

$$
\begin{gathered}
\dot{q}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] q+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] q+[0] u
\end{gathered}
$$

the closed loop transfer function with state variable feedback is $G(s)=\frac{G_{p f}}{s^{2}+\left(k_{2}-1\right) s+\left(k_{1}-1\right)}$

