ECE-320: Linear Control Systems

Homework 3
Due: Friday March 27 at the beginning of class.

1) For the following systems
a) Determine the system type $(0,1,2, \ldots)$
b) If the system is type 0 assume $G_{p f}=1$ and determine the position error constant K_{p} and the steady state error for a unit step input. Then determine the value of $G_{p f}$ to make this error zero. If the system is type 1 , assume $G_{p f}=1$ and determine the steady state error for a unit step, the velocity error constant K_{v}, and the steady state error for a unit ramp.
Ans. (steady state errors) $-\frac{3}{2}, \frac{3}{13},-\frac{3}{5}, \frac{1}{2} ;$ (prefilers) $\frac{2}{5}, \frac{13}{10}$

2) For the following problem, assume we are using the following control system

where the plant is given by

$$
G_{p}(s)=\frac{1}{s^{2}+4 s+29}=\frac{1}{(s+2-5 j)(s+2+5 j)}
$$

For the following controllers, sketch the root locus with arrows showing the direction of travel as k increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the asymptotes (σ_{c}) and the angles of the asymptotes.

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by hand.
a) $G_{c}(s)=k($ proportional (P) controller $)$
b) $G_{c}(s)=\frac{k}{s}$ (an integral (I) controller)
c) $G_{c}(s)=\frac{k(s+z)}{s}$ (a proportional + integral (PI) controller) Write the centroid σ_{c} as a function of z. For what values of z will the two asymptotes be in the right half plane? (For plotting purposes, assume z is equal to 2 .)
d) $G_{c}(s)=k(s+z)$ (a proportional+derivative (PD) controller) (For plotting purposes, assume z is equal to 2.)
e) $G_{c}(s)=\frac{k\left(s+z_{1}\right)\left(s+z_{2}\right)}{s}$ (a proportional+integral+derivative (PID) controller) Sketch this for the case where both zeros are real and then when both zeros are complex conjugates.
f) $G_{c}(s)=\frac{k(s+z)}{(s+p)}$ (a lead controller, $p>z$) Write an expression for σ_{c} as a function of the distance between the pole and the zero, $l=p-z$. What happens to the asymptotes as l gets larger? (For plotting purposes, assume p is 5 and z is 1.)
3) For the following problem, assume we are using the following control system

where the plant is given by

$$
G_{p}(s)=\frac{1}{s+3}
$$

For the following controllers, sketch the root locus with arrows showing the direction of travel as k increases. If there are any poles going to zeros at infinity, you need to compute the centroid of the asymptotes (σ_{c}) and the angles of the asymptotes.

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by hand.
a) $G_{c}(s)=k($ proportional (P) controller $)$
b) $G_{c}(s)=\frac{k}{s}($ an integral (I) controller $)$
c) $G_{c}(s)=\frac{k(s+z)}{s}$ (a proportional + integral (PI) controller) Sketch this for the case when z is equal to 2 and then assume z is equal to 4; there will be two plots.
d) $G_{c}(s)=k(s+z)$ (a proportional+derivative (PD) controller) Sketch this for the case where z is equal to 2 and then assume $z=4$; there will be two plots.
e) $G_{c}(s)=\frac{k\left(s+z_{1}\right)\left(s+z_{2}\right)}{s}$ (a proportional+integral+derivative (PID) controller) Sketch this for the case where there are zeros at $-4 \pm 4 j$ and when they are at -6 and -8 ; there will be two plots.
4) (sisotool problem) For the plant modeled by the transfer function

$$
G_{1}(s)=\frac{6000}{s^{2}+4 s+400}
$$

You are to design a PI controller, a PID controller with complex conjugate zeros, and a PID controller with real zeros that meet the following specifications

$$
\begin{aligned}
& P O \leq 10 \% \\
& T_{s} \leq 2.5 \mathrm{sec} \\
& k_{p} \leq 0.5 \\
& k_{i} \leq 5 \\
& k_{d} \leq 0.01
\end{aligned}
$$

In sisotool, in the LTI viewer, if you right click on the graph and select Characteristics you can let sisotool find the settling time. You should copy your step response and root locus plots to a word document, as well as including your values of the controller coefficients.
5) (sisotool problem) For the plant modeled by the transfer function

$$
G_{2}(s)=\frac{6250}{s^{2}+0.5 s+625}
$$

You are to design a PI controller, a PID controller with complex conjugate zeros, and a PID controller with real zeros that meet the following specifications

$$
\begin{aligned}
& P O \leq 10 \% \\
& \text { PI } T_{s} \leq 15.0 \mathrm{sec}, P I D T_{s} \leq 0.5 \mathrm{sec} \\
& k_{p} \leq 0.5 \\
& k_{i} \leq 5 \\
& k_{d} \leq 0.01
\end{aligned}
$$

In sisotool, in the LTI viewer, if you right click on the graph and select Characteristics you can let sisotool find the settling time. You should copy your step response and root locus plots to a word document, as well as including your values of the controller coefficients.

