ECE-320, Practice Quiz \#1

Problems 1 and 2 refer to the following transfer function $H(s)=\frac{2 s+1}{(s+1)^{2}+4}$

1) For this transfer function, the corresponding impulse response $h(t)$ is composed of which terms?
a) $e^{-t} \cos (2 t), e^{-t} \sin (2 t)$
b) $e^{-2 t} \cos (t), e^{-2 t} \sin (t)$
c) $e^{-t} \cos (4 t), e^{-t} \sin (4 t)$
d) $e^{-4 t} \cos (t), e^{-4 t} \sin (t)$
2) The poles of the transfer function are
a) $2 \pm \mathrm{j}$
b) $-2 \pm j$
c) $-1 \pm 2 \mathrm{j}$
d) $-1 \pm 4 \mathrm{j}$

Problems 3 and 4 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

3) The number of (asymptotically) maginally stable systems is
a) 0
b) 1
c) 2
d) 3
4) The number of (asymptotically) unstable systems is
a) 0
b) 1
c) 2
d) 3
5) Which of the following transfer functions represents a (asymptotically) stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)}$
$G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s}$
$G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 6 and 7 refer to the following impulse responses of six different systems

$$
\begin{aligned}
& h_{1}(t)=\left[t e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=\left[2 e^{-2 t}+t^{3} \sin (t)\right] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

6) The number of (asymptitcally) unstable systems is
7) The number of (asymptotically) marginally stable systems is
a) 1
b) 2
c) 3
d) 4
a) 1
b) 2
c) 3
d) 4

Problems 8 and 9 refer to a system with poles at $-2+5 j .-2-5 j .-10+j,-10-j$, and -20
8) The best estimate of the settling time for this system is
a) 2 seconds
b) 0.4 seconds
c) $4 / 5$ seconds
d) 0.2 seconds
9) The dominant pole(s) of this system are
a) $-2+5 j$ and $-2-5 j$
b) $-10+j$ and $-10-j$
c) -20
10) Which of the following transfer functions represents a (asymptotically) stable system?

$$
\begin{array}{lll}
G_{a}(s)=\frac{s-1}{s+1} & G_{b}(s)=\frac{s}{(s+1)} & G_{c}(s)=\frac{s}{s^{2}-1} \\
G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} & G_{e}(s)=\frac{(s-1-j)(s-1+j)}{(s+2)^{2}} & G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}
\end{array}
$$

a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d}
c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}

Problems 11-13 refer to the figure below, which shows the unit step response of a real 2nd order system and the unit step response of a second order model we are trying to match to the real system.

11) In order to make the model better match the real system, the damping ratio of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine
12) In order to make the model better match the real system, the natural frequency of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine
13) In order to make the model better match the real system, the static gain of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine

For problems 14-18, consider the signal flow graph representation of the following block diagram.

14) The path is a) $1 \quad$ b) G c) H d) $G H \quad$ e) none of these
15) The loop is a) 1
b) G
c) H d) GH
e) none of these
16) The determinant (Δ) is a) 1
b) $1-G H$
c) $1+G H$
d) none of these
17) The cofactor is a) 1
b) $G \quad$ c) H
d) $G H$
e) none of these
18) The transfer function is
a) 1
b) G
c) GH
d) $\frac{G}{1-G H}$
e) $\frac{G}{1+G H}$

For problems 19-21, consider the signal flow graph representation of the following block diagram.

19) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
20) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
21) The determinant (Δ) is
a) 1
b) $1-\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
22) The transfer function is a) 1
b) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1+H_{2} H_{3} H_{4}}$
c) $\frac{H_{3} H_{5}+H_{1} H_{2} H_{3}}{1-H_{2} H_{3} H_{4}}$

For problems 23 - 26 consider the signal flow graph representation of the following block diagram.

23) How many paths are there?
a) 0
b) 1 c) 2
d) 3
e) 4
24) How many loops are there?
a) 0
b) 1
c) 2
d) 3
e) 4
25) The determinant (Δ) is
a) 1
b) $1-H_{2} H_{3}-H_{3} H_{4}$
c) $1+\mathrm{H}_{2} \mathrm{H}_{3}+\mathrm{H}_{3} \mathrm{H}_{4}$
d) none of these
26) The transfer function is a) 1
b) $\frac{H_{1} H_{2} H_{3}}{1-H_{2} H_{3}-H_{3} H_{4}}$
c) $\frac{H_{1} H_{2} H_{3}}{1+H_{2} H_{3}+H_{3} H_{4}}$

For problems 27-29 consider the following signal flow graph

27) How many paths are there?
a) 1
b) 2
c) 3
d) 4
28) How many loops are there?
a) 2
b) 3
c) 4
d) 5
e) 6 f) 7
29) Are any of the cofactors equal to 1 ?
a) yes b) no

Answers: 1-a, 2-c, 3-d, 4-b, 5-c, 6-b, 7-a, 8-a, 9-a, 10-a, 11-b, 12-b, 13-b, 14-b, 15-e, 16-c, 17-a, 18-e, 19-c, 20-b, 21-c, 22-b, 23-b, 24-c, 25-c, 26-c, 27-b, 28-d, 29-b

