ECE-320: Linear Control Systems

Homework 9
Due: Friday May 16 at 5:10 PM

1) Consider the continuous-time plant with transfer function

$$
G_{p}(s)=\frac{1}{(s+1)(s+2)}
$$

We want to determine the discrete-time equivalent to this plant, $G_{p}(z)$, by assuming a zero order hold is placed before the continuous-time plant to convert the discrete-time control signal to a continuous time control signal.

Show that if we assume a sampling interval of T, the equivalent discrete-time plant is

$$
G_{p}(z)=\frac{z\left(0.5-e^{-T}+0.5 \mathrm{e}^{-2 T}\right)+\left(0.5 e^{-T}-e^{-2 T}+0.5 e^{-3 T}\right)}{\left(z-e^{-T}\right)\left(z-e^{-2 T}\right)}
$$

Note that we have poles were we expect them to be, but we have introduced a zero in going from the continuous time system to the discrete-time system.
2) Consider the discrete-time state variable model $\underline{x}(k+1)=G(T) \underline{x}(k)+H(T) u(k)$
where the explicit dependence of G and H on the sampling time T has been emphasized. Here

$$
\begin{aligned}
& G(T)=e^{A T} \\
& H(T)=\int_{0}^{T} e^{A \lambda} d \lambda B
\end{aligned}
$$

a) Show that if A is invertible, we can write $H(T)=\left[e^{A T}-I\right] A^{-1} B$
b) Show that if A is invertible and T is small we can write the state model as

$$
\underline{x}(k+1)=[I+A T] \underline{x}(k)+B T u(k)
$$

c) Show that if we use the approximation

$$
\underline{\dot{x}}(t) \approx \frac{\underline{x}((k+1) T)-\underline{x}(k T)}{T}=A x(k T)+B u(k T)
$$

we get the same answer as in part \mathbf{b}, but using this approximation we do not need to assume A is invertible.
d) Show that if we use two terms in the approximation for $e^{A T}$ (and no assumptions about A being invertible), we can write the state equations as

$$
\underline{x}(k+1)=[I+A T] \underline{x}(k)+\left[I T+\frac{1}{2} A T^{2}\right] B u(k)
$$

3) For the state variable system

$$
\underline{\dot{x}}(t)=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right] \underline{x}(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(t)
$$

a) Show that

$$
e^{A T}=\left[\begin{array}{cc}
2 e^{2 T}-e^{3 T} & e^{2 T}-e^{3 T} \\
2 e^{3 T}-2 e^{2 T} & 2 e^{3 T}-e^{2 T}
\end{array}\right]
$$

b) Derive the equivalent ZOH discrete-time system

$$
\underline{x}(k+1)=G \underline{x}(k)+H u(k)
$$

for $T=0.1$ (integrate each entry in the matrix $e^{A \lambda}$ separately.) Compare your answer with that given by Matlab's c2d command, $[\mathrm{G}, \mathrm{H}]=\mathrm{c} 2 \mathrm{~d}(\mathrm{~A}, \mathrm{~B}, \mathrm{~T})$.
4) For the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ show that $e^{A t}=\left[\begin{array}{cc}e^{t} & 0 \\ t e^{t} & e^{t}\end{array}\right]$
5) Consider the discrete-time state variable model $\underline{x}(k+1)=G \underline{x}(k)+H u(k)$ with the initial state $x(0)=0$. Let

$$
G=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], H=\left[\begin{array}{l}
1 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], D=0
$$

a) Determine the corresponding transfer function for the system.
b) Using state variable feedback with $u(k)=G_{p f} r(k)-K x(k)$ show that the transfer function is given by

$$
F(z)=\frac{Y(z)}{R(z)}=C(z I-\tilde{G})^{-1} \tilde{H}=\frac{G_{p f}(z+1)}{\left(z+k_{1}\right)\left(z+k_{2}\right)-\left(k_{1}-1\right)\left(k_{2}-1\right)}
$$

c) Show that if $G_{p f}=1$ and $k_{1}=k_{2}=0$, the transfer function reduces to that found in part \mathbf{a}.
d) Is the system controllable? That is, is it possible to find k_{1} and k_{2} to place the poles of the closed loop system where ever we want? For example, can we make both poles be zero?
6) Consider the discrete-time state variable model

$$
\underline{x}(k+1)=G \underline{x}(k)+H u(k)
$$

with the initial state $x(0)=0$. Let

$$
G=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], H=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

a) Determine the corresponding transfer function for the system.
b) Using state variable feedback with $u(k)=G_{p f} r(k)-K x(k)$ show that the transfer function is given by

$$
F(z)=\frac{Y(z)}{R(z)}=\frac{G_{p f}(z-1)}{(z-1)\left(z+k_{2}-1\right)}
$$

c) Show that if $G_{p f}=1$ and $k_{1}=k_{2}=0$, the transfer function reduces to that found in part \mathbf{a}.
d) Is the system controllable?
7) Consider the discrete-time state variable model

$$
\underline{x}(k+1)=G \underline{x}(k)+H u(k)
$$

with the initial state $x(0)=0$. Let

$$
G=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], H=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], D=0
$$

a) Determine the corresponding transfer function for the system.
b) Using state variable feedback with $u(k)=G_{p f} r(k)-K x(k)$ show that transfer function is given by

$$
F(z)=\frac{Y(z)}{R(z)}=\frac{G_{p f}}{z^{2}+\left(k_{2}-1\right) z+\left(k_{1}-1\right)}
$$

c) Show that if $G_{p f}=1$ and $k_{1}=k_{2}=0$, the transfer function reduces to that found in part \mathbf{a}.
d) Is it possible to find k_{1} and k_{2} to place the poles of the closed loop system where ever we want? For example, can we make both poles be zero? If we want the poles to be at p_{1} and p_{2} show that $k_{2}=1-\left(p_{1}+p_{2}\right)$ and $k_{1}=1+p_{1} p_{2}$.

