
1

ECE-320 Lab 6: Discrete-Time PID and PI Controllers and sisotool

Overview

In this lab you will be controlling both of the one degree of freedom systems you previously modeled
using discrete-time PID and PI controllers. Both one degree of freedom systems must be controlled, and
if there are two people in your lab group each lab partner should do a different system.

You will need to download the files for Lab 6 from the class website.

Design Specifications: For each of your systems, you should try and adjust your parameters until you
have achieved the following:

• Settling time less than 1.5 seconds.
• Percent Overshoot less than 25%

Your memo should include four graphs for each of the 1 dof systems you used (a PID controller and a
PI controller for each system, two different sampling intervals Your memo should compare the
difference between the predicted response (from the model) and the real response (from the real system)
for each of the systems.

Background/Review

The file DT_PID.mdl is a Simulink model that implements a discrete-time PID controller. It is
somewhat unusual in that the plant is represented in state-variable form, but this is the usual form we
will using in this class. The Simulink model looks like the model shown in Figure 1:

Figure 1. Simple feedback loop with a discrete-time PID controller.

2

The file DT_PID_driver.m is the Matlab file that runs this code. We will be utilizing Matlab’s sisotool
for determining the pole placement and the values of the gains.

Before we go on, we need to remember the following two things about discrete-time systems:

• For stability, all poles of the system must be within the unit circle. However, zeros can be
outside of the unit circle.

• The closer to the origin your dominant poles are, the faster your system will respond. However,

the control effort will generally be larger.

The basic transfer function form of the components of a discrete-time PID controller are as follows:

Proportional (P) term : () ()pC z K E z=

Integral (I) term: 1()
1 1

i iK K zC z
z z−= =

− −

Derivative (D) term : 1 (1)() (1) d
d

K zC z K z
z

− −
= − =

PI Controller: To construct a PI controller, we add the P and I controllers together to get the overall
transfer function:

()
()

1 1
p i pi

p

K K z KK zC z K
z z

+ −
= + =

− −

In sisotool this will be represented as
2() ()()

(1) (1)
K z az K z aC z

z z z
+ +

= =
− −

In order to get the coefficients we need out of the sisotool format we equate coefficients to get:

,p i pK Ka K K K= − = −

PID Controller: To construct a PID controller, we add the P, I, and D controllers together to get the
overall transfer function:

2 2 2(1) (1) () (2)(1)()
1 (1) (1)

p i d p i d p d di d
p

K z z K z K z K K K z K K z KK z K zC z K
z z z z z z

− + − − + + + − − +−
= + + = =

− − −

In sisotool this will be represented as
2()()
(1)

K z az bC z
z z
+ +

=
−

In order to get the coefficients we need out of the sisotool format we equate coefficients to get:

, 2 ,d p d i p dK Kb K Ka K K K K K= = − − = − −

For the PID controller, we can have either two complex conjugate zeros or two real zeros.

3

Sisotool (Brief) Example

Run the Matlab program DT_PID_driver.m. This program is set up to read the data file
bobs_210_model.mat, which is a continuous time state variable model for a one degree of freedom
rectilinear system, construct an equivalent discrete-time system using a sample and hold with a delay
(the sample time is given by Ts), and implement a P controller with gain 0.0116. It will put the value of
the transfer function for your system, ()pG z , in your workspace. Now we are ready for sisotool.

Getting Started

• Type sisotool in the command window
• Click close when the help window comes up
• Click on View, then Design Plots Configuration, and turn off all plots except the Root Locus

plot (set the Plot Type to Root Locus for Plot 1, and set the Plot Type to None for all other
Plots)

Loading the Transfer Function

• In the SISO Design window, Click on file → import.
• We will usually be assigning Gp(z) to block G (the plant). Under the System heading, click on

the line that indicates G, then click on Browse.
• Choose the available Model that you want assigned to G (Click on the appropriate line) and then

click on Import, and then on Close.
• Click OK on the System Data (Import Model) window
• Once the transfer function has been entered, the root locus is displayed. Make sure the poles and

zeros of your plant are where you think they should be. Note that there will be three poles (one at
zero) for our second order system since for this system there is a delay inserted by the Simulink
model.

Generating the Step Response

• Click on Analysis → Response to Step Command (the system is unstable at this point)
• You will probably have two curves on your step response plot. To just get the output, type

Analysis → Other Loop Responses. If you only want the output, then only r to y is checked,
and then click OK. However, sometimes you will also want the r to u output, since it shows the
control effort for P, I, and PI controllers.

• You can move the location of the pole in the root locus plot by putting the cursor over the pink
button and holding the left mouse button down as you move the pole locations. You should note
that the step response changes as the pole locations change.

• The bottom of the root locus window will show you the closed loop poles corresponding to the
cursor location if you hold down the left mouse button. However, if you need all of the closed
loop poles you have to look at all of the branches.

4

Entering a Compensator (controller): We will implement a PI controller here

• Click on Designs, then Edit Compensators.
• Right click in the Dynamics window to enter real poles and zeros. You will be able to changes

these values very easily later. Since we want a PI controller, we need a pole to be a 1 and we
need to be able to change the value of the zero. For now assume the zero is at -1.

• Look at the form of C to be sure it's what you intended, and then look at the root locus with the
compensator.

• You can again see how the step response changes with the compensator by moving the locations
of the zero (grab the pink dot and slide it) and moving the gain of the system (grab the squares
and drag them). Remember we need all poles and zeros to be inside the unit circle for stability!

• Move the pole and zero around until the zero is approximately -0.295 and the gain is
approximately 0.0563. You should get a figure like that shown in Figure 2.

Figure 2. Discrete-time example with w PI controller.

Adding Constraints

• Right Click on the Root Locus plot, and choose Design Requirements then either New to add
new constraints, or Edit to edit existing constraints.

• At this point you have a choice of various types of constraints.
• Remember these constraints are only exact for ideal second order systems!!!!!

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

5

Printing/Saving the Figures:

To save a figure sisotool has created, click File → Print to Figure

Odds and Ends :

You may want to fix the axes. To do this,

• Right click on the Root Locus Plot
• Choose Properties
• Choose Limits
• Set the limits and turn the Auto Scale off

You may also want to put on a grid, as another method of checking your answers. To do this, right
click on the Root Locus plot, then choose Grid

It is easiest if you use the zero/pole/gain format for the compensators. To do this
click on Edit → SISO Tool Preferences → Options and click on zero/pole/gain.

Back to Matlab.

• Determine the correct values of a and K
• Enter these in the Matlab code DT_PID_driver.m
• Modify DT_PID_driver.m to compute the proportional and integral gains
• Run DT_PID_driver.m and print out the picture and attach it to this homework. It should look

like Figure 1.

6

For each of your two 1 dof systems, you will need to go through the following steps:

Step 1: Set up the 1 dof system exactly the way it was when you determined its model parameters.

Step 2: Modify DT_PID_driver.m to read in the correct model file. You may have to copy this model
file to the current folder.

Step 3: Modify DT_PID_driver.m to use the correct saturation_level for the system you are using and
be sure the input is in centimeters for the rectilinear (Model210) systems and radians for the torsional
(Model 205) systems. Also be sure the output is plotted in centimeters for the rectilinear (Model 210)
systems and in degrees for the torsional (Model 205) systems. This primarily involves changing the
value of the variable scale and changing a label axis.

Step 4: Set the sampling interval to 0.1 seconds (the first time) and then 0.05 seconds (the second time).

Step 5: PID and PI Control

• Design a PID and then a PI controller using sisotool to meet the design specs. Use a constant
prefilter (i.e., a number, most likely the number 1)

• Implement the correct gains into DT_PID_driver.m

• Simulate the system for 2.0 seconds. If the design constrains are not met, or the control effort hits

a limit, redesign your controller (you might also try a lower input signal). Try and stay away
from the maximum allowed control values as much as possible, they are not as good a predictor
with discrete-time systems as with continuous time systems.

• Reset the system using ECPDSPReset.mdl

• Compile the correct closed loop ECP Simulink driver (Model210_DT_PID.mdl or

Model205_DT_PID.mdl), connect to the system, and run the simulation.

• Use the Compare_DT1.m file (or a modification of it) to plot the results of both the simulation
and the real system on one nice, neatly labeled graph. You need to include this graph in your
memo. Also be sure the output is plotted in centimeters for the rectilinear (Model 210) systems
and in degrees for the torsional (Model 205) systems. This primarily involves changing the value
of the variable scale and changing a label axis.

	ECE-320 Lab 6: Discrete-Time PID and PI Controllers and sisotool

