ECE-320, Quiz #3

Problems 1-3 refer to the following system:

1) Assuming the prefilter G_{pf} is 1, the **position error constant** K_p is best approximated as

a) 2/3 b) 2/5 c) 1 d) 0

2) Assuming the prefilter G_{pf} is 1, the steady state error for a unit step is best approximated as

b) 5/7 c) 3/5 d) 2/5 a) 1/3

3) The value of the prefilter G_{pf} that produces **a steady state error** of zero is:

b) 7/2 c) 5/2 d) 7/5 a) 1

4) For the following system

_

The dynamic prefilter which cancels the closed loop zeros and produces a zero steady state error for a unit step input is

a)
$$\frac{\frac{11}{8}}{\frac{1}{s+4}}$$
 b) $\frac{\frac{11}{2}}{\frac{1}{s+4}}$ c) $\frac{11}{\frac{1}{s+4}}$ d) $\frac{\frac{3}{2}}{\frac{1}{s+4}}$

Mailbox _____

Name

Problems 5-7refer to the following system

5) Assuming the prefilter G_{pf} is 1, the velocity error constant K_{v} is best approximated as

a) 2/3 b) 2/5 c) 1 d) 0

6) Assuming the prefilter G_{pf} is 1, the **steady state error** for a unit ramp input is best approximated as

a) 1/2 b) 1 c) 2 d) 1/2

7) Assuming the prefilter G_{pf} is 1, the **steady state error** for a unit step input is best approximated as

a) ∞ b) 0 c) 1 d) 2/5

8) Consider the closed loop system below:

If we want to use a dynamic prefilter to **cancel the closed loop zero** and produce a **zero steady state error for a unit step**, we should choose the prefilter as

a)
$$G_{pf}(s) = \frac{1}{s+1}$$
 b) b) $G_{pf}(s) = \frac{5}{s+1}$ c) $G_{pf}(s) = \frac{6}{s+1}$ d) $G_{pf}(s) = \frac{7}{s+1}$

9) Is
$$G_{pf}(s) = \frac{1}{(s-1)(s+2)}$$
 an acceptable prefilter (for any system)?

4

a) Yes b) No

Problems 10-12 refer to the following root locus plot for a unity feedback system with a plant and a controller.

10) Based on this root locus plot, the best estimate of the poles of the closed loop system are
a) -0.3+j7, -0.3-j7, -0.6
b) 1+j2, 1-j2, and -3

11) Is this a type one system? a) yes b) no

12) Is this a stable system? a) yes b) no

13) Consider the following root locus plot for a plant and controller in a unity feedback configuration.

If we want the system to be stable, should we

a) increase the gain b) decrease the gain c) do nothing

Mailbox _____

Problems 14-19 refer to the following feedback system with plant $G_p(s) = \frac{1}{(s+3)(s+4)}$

14) If we use a proportional controller $G_c(s) = k_p$ will the system remain stable for all positive values of k_p ?

a) yes b) no

15) If we use a proportional controller $G_c(s) = k_p$ is there any value of k_p for which the settling time is less than 0.5 seconds?

a) yes b) no

16) If we use an integral controller $G_c(s) = \frac{k_i}{s}$ will the system remain stable for all positive values of k_i ?

a) yes b) no

17) If we use an integral controller $G_c(s) = \frac{k_i}{s}$ is there any value of k_i for which the settling time is less than 0.5 seconds?

a) yes b) no

18) For which of the following PID controllers will the settling time be smaller as $k \to \infty$

a)
$$G_c(s) = \frac{k(s+2+j)(s+2-j)}{s}$$
 b) $G_c(s) = \frac{k(s+4+2j)(s+4-2j)}{s}$
c) the results will be the same

19) For which of the following PD controllers will the settling time be smaller as $k \to \infty$ a) $G_c(s) = k(s+5)$ b) $G_c(s) = k(s+10)$ c) the results will be the same