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ECE-320 Lab 4: PI-D and I-PD Control with Dynamic Prefilters 
  
Overview 
 
In this lab you will be controlling the one degree of freedom systems you previously modeled using PI-D 
and I-PD controllers with and without dynamic prefilters.  
 
You will need your mathematical models for your systems the closedloop_driver.m  and closedloop.mdl  
files for this lab. 
 
Design Specifications: For each of your systems, you should try and adjust your parameters until you 
have achieved the following: 
 

• Settling time less than 1.0 seconds. 
• Steady state error less than 0.1 cm  for a 1 cm step, and less than 0.05 cm for  a 0.5 cm step 
• Percent Overshoot less than 25% 

 
As a start, you should initially limit your gains as follows: 
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Your memo should include four graphs for each of the 1 dof systems you used (one PI-D and one I-PD 
controller with and without dynamic prefilters.) Be sure to include the values of pk , ik , and dk  in the 
captions for each figure. Your memo should compare the difference between the predicted response 
(from the model) and the real response (from the real system) for each of the systems. How does the use 
of a dynamic prefilter change the response? Attach your Matlab driver file closedloop_driver.m 
 

 
Background:  While PID controllers are very versatile, they have a number of drawbacks. One of the 
major drawbacks is that for a unit step input, the control effort ( )u t  can be infinite at the initial time. 
This is referred to as a set-point kick. There are two commonly used configurations of PID controls 
schemes that utilize a different structure, the PI-D and the I-PD controllers. These are a bit more difficult 
to model using Matlab’s sisotool, but it can be done and we get to explore more of sisotool. 
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The PI-D controller avoids the set-point kick by putting the derivative in the feedback path, while the I-
PD controller avoids the set-point kick by placing both the derivative and proportional terms in the 
feedback path. Both types of controllers can be implemented using the following Simulink model. 

 
For the PI-D controller, we have 
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while for the I-PD controller we have 

1( ) ikC s
s

= , 2 ( ) 1 1
50

d
p

k sC s k
s

= +
+

 

 
Note that for both controllers we continue to use a lowpass filter (with a cutoff of 50 rad/sec) in series 
with a differentiator. 
 
For both of these controllers, if we ignore the prefilter (assume it is unity),  the transfer function from 
input to output is 
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Next we need to use sisotool to help determine reasonable values for pk , ik , and dk . You should go 
through the following example before you try to design a controller for your own system. 
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When you start sisotool, you need to click on Control Architecture to get the proper configuration. Be 
sure that sisotool uses negative feedback for both loops.  
 

 
 
Next we need to select the correct architecture. Select the following architecture and be sure that sisotool 
uses negative feedback for both loops.  
 

 
 

Click here to 
change the 

control 
architecture 
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Click on OK and when the previous window appears, select Loop Configuration.   
 
In the block Open-loop configuration for: select Open Loop Output of C1 and select Open for Output 
of Block C2.  
 
In the block Open-loop configuration for: select Open Loop Output of C2 and select Open for Output 
of Block C1.  
 
The following figures demonstrate what you are to do. Note that this step is not really necessary, but I 
find it a bit less confusing. The controllers in each window may not be exactly what you are expecting, 
but it is easier to visualize this way.  
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Next, go back to our design window, and select View, then Design Plots Configuration. Then choose 
to plot the Root Locus plot for both Open Loop 1and Open Loop 2, as the following window shows: 

 

 
 
You should now have a design window with two (empty) root locus plots and we are ready to start. 
 

For practice, let’s assume our plant is 2
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 .When we import the plant, we should 

get a design window that looks like the figure on the following page. Each window shows the root locus 
for the plant and  two identical proportional controllers. 
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Let’s initially assume we want to use a PI-D controller.  In this case, for simulation purposes, we have 

2 ( ) dC s k s=  (we won’t worry about the lowpass filter here). We will start off asuming 0.01dk = , but 
this is just a guess! To assign this to controller C2, in the design window we select Designs, the Edit 
Compensator, then select C2 in the compensator window, and enter the controller. 

 
Next we’ll enter the PI part of the controller into 1( )C s .  
 

As a starting point, let’s assume 1
0.15( 15)( ) sC s

s
+

=  and enter this into C1. If you have done this 

correctly, you should get the following root locus plots. 
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The step response for this controller configuration is: 
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Note that, compared to a normal PID controller, the control effort is not infinite at 0, and actually builds 
as time goes on (like an integral controller). At this point we might want to go back modify our 
controllers C1 and C2  to see if we get acceptable performance. Note that we can modify the two 
controllers (and gains) independently. 
 
 
Now we’ll assume we want to control the same plant, but this time use an I-PD controller. We first have 
to guess a PD controller. For the systems I tired, I found that the zero should be fairly small, between -1 
and -5. As a start, we’ll try the following PD  and I controllers 
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If you enter these controllers, you should get the following root locus plots: 
 

 
 
The step response for this system is plotted on the following page. Again, you can change the controllers 
independently to try to obtain an acceptable response. 
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Now we want to design and implement these types of controllers for your systems. You should go 
through the following steps for each of your systems. 
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Step 1:  Save the file closedloop.mdl as closedloop2.mdl, then change the Simulink model in 
closedloop2.mdl to match the new control structure shown below: 
 

 
 
Step 2: Modify closedloop_driver.m to read in the correct model file for your system and implement 
the new control structure by running closedloop2.mdl. In particular, you must now determine C1(s) and 
C2(s).  The best way to implement the controller, for the PI-D controller (for example) is 
 
C1 = tf(kp,1)+tf(ki,[1 0]);     C2 = tf([kd 0],[1/50 1]); 
 
You then need to determine the numerator and the denominator for C1 and C2 (since the Simulink 
model file closedloop2 expects them).  You should look to see how this was done for Gc(s) for the 
regular PID controller. 
 
Finally, to determine the closed loop transfer function (for the dynamic profiler) type 
 
Go = mineral(C1*Gp/(1+C1*GP+C2*Gp),tol); 
 
and then get the numerator and denominator as before.  
 
Step 3: Set up the 1 dof  systems exactly the way they were when you determined their model 
parameters. 
 
Step 4: Save the ECP driver file Model210_Closedloop.mdl as Model210_Closedloop2.mdl and 
modify it to implement the new control structure, just as you did in closedloop2.mdl. 
. 
Step 4:  PI-D Control  
 

• Design a PI-D controller to meet the design specs. Use a constant prefilter (i.e., a number, most 
likely the number 1). Be sure to observe the limits on the other gains. 

 
• Implement the correct gains into closedloop_driver.m 

 
• Simulate the system for 1.5 seconds.  If the design constrains are not met, or the control effort 

hits a limit, redesign your controller (you might also try a lower input signal) 
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• Compile the correct closed loop ECP Simulink driver, connect to the system, and run the 

simulation.  
 

• Use the compare1.m file (or a modification of it) to plot the results of both the simulation and 
the real system on one nice, neatly labeled graph. You need to include this graph in your memo. 
Be sure to include the values of pk , ik , and dk in your memo.  

 
• Change the prefilter to cancel the zeros of the closed loop system and still have a steady state 

error of zero. Rerun the simulation, recompile the ECP system, run the ECP system, and 
compare the predicted with the measured response. You also need to include this graph in your 
memo. Be sure to include the values of pk , ik , and dk in your memo.  

 
Step 6:  I-PD Control  
 

• Design an I-PD controller to meet the design specs. Use a constant prefilter (i.e., a number, 
most likely the number 1). Keep the zero of the PD controller small, between -1 and -5, and be 
sure to observe the limits on the other gains. 

 
• Implement the correct gains into closedloop_driver.m 

 
• Simulate the system for 1.5 seconds.If the design constrains are not met, or the control effort hits 

a limit, redesign your controller (you might also try a lower input signal) 
 

• Compile the correct closed loop ECP Simulink driver, connect to the system, and run the 
simulation.  

 
• Use the compare1.m file (or a modification of it) to plot the results of both the simulation and 

the real system on one nice, neatly labeled graph. You need to include this graph in your memo. 
Be sure to include the values of pk , ik , and dk in your memo.  

 
• Change the prefilter to cancel the zeros of the closed loop system and still have a steady state 

error of zero. Rerun the simulation, recompile the ECP system, run the ECP system, and 
compare the predicted with the measured response. You also need to include this graph in your 
memo. Be sure to include the values of pk , ik , and dk in your memo.  
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