Name	N	Iailbox

ECE-320 Linear Control Systems Spring 2012, Exam 1

No calculators or computers allowed, except for Problem 8 when you should use Matlab's sisotool.

You must simplify your answers as much as possible, or points will be deducted.

Problem 1	/7
Problem 2	/7
Problem 3	/7
Problem 4	/7
Problem 5	/7
Problem 6	/20
Problem 7	/20
Problem 8	/25
Total	/100

1) (7 points) The following graph shows the unit step response for a system.

a) Estimate the **percent overshoot**

b) Estimate the **static gain**

2) (7 points) The following graph shows the unit step response of a system.

a) Estimate the **steady state error**.

b) Estimate the steady state error for a unit ramp input.

3) (7 points) The following figure shows the unit ramp response of a system.

a) Estimate the **steady state error**.

b) Estimate the steady state error for a unit step input.

4) (7 points) For the following systems, assume $G_c(s) = \frac{s+2}{s+3}$ and $G_p(s) = \frac{s+5}{s+4}$

a) Determine the position error constant K_p

b) Determine the steady state error for a unit step input.

5) (7 points) For the following systems, assume $G_c(s) = \frac{2}{s}$ and $G_p(s) = \frac{s+5}{s+4}$

a) Determine the velocity error constant K_{v} .

b) Determine the steady state error for a unit ramp input.

- **6)** (20 points) For a system with the transfer function $H(s) = \frac{1}{s(s+1)}$
- a) Determine the **impulse response** h(t)

b) Determine the unit step response.

- 7) (20 points) For the system with closed loop transfer function $G_o(s) = \frac{k}{s^2 + 2s + k}$
- a) Determine an expression for the sensitivity of G_o to k as a function of s, $S_k^{G_o}$

b) Determine and expression for the magnitude of the sensitivity function as a function of frequency, ω . Simplify your answers as much as possible.

Name Mai	lbox
----------	------

8) (25 points) (sisotool problem)

Consider the plant

$$G_p(s) = \frac{30}{s^2 + 6s + 10}$$

Design a PID controller using sisotool with real zeros so that

$$T_s \leq 1.5 \sec P.O. \leq 10\%$$

In addition, your controller must be designed so that

$$k_p \leq 0.5$$

$$k_i \leq 2$$

$$k_d \leq 0.05$$

Write your final values for k_p , k_i , k_d , and the transfer function of the controller in the space below.

Name	Mailbox	