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ECE-320: Linear Control Systems 

Homework 3 

 

Due: Thursday March 24 at the beginning of class 

 

1) For the following systems 

 

a)  Determine the value of the prefilter gain 
pfG so that the steady state error for a unit step input of the 

closed loop system is zero. (Hint: Think about the easiest way to do this, you should never have to write 

out the closed loop transfer function as the ratio of two polynomials.) Ans. 1,4,1.3,2.5 (though not in that 

order) 

 

b) Simulate each system in Matlab (not Simulink) for a step response. Run the simulation until the 

system comes to steady state. Use subplot to put all four plots on one page. You may want to type 

orient tall before your first plot so Matlab will use more of the page.  
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2) For the following systems 

 

a)  Determine the system type (0, 1, 2, ...) 

 

b) If the system is type 0 assume 1pfG  and determine the position error constant 
pK  and the steady 

state error for a unit step input. Then determine the value of 
pfG  to make this error zero.  If the system is 

type 1, assume 1pfG   and determine the steady state error for a unit step, the velocity error constant 

vK , and the steady state error for a unit ramp. Is there any constant value of
pfG  that can change the 

steady state error for a ramp? 

 

Ans.  (steady state errors)   
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3) For the following problem, assume we are using the following control system 

 

 

 

 

 

 

 

 

where the plant is given by 
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For the following controllers, sketch the root locus with arrows showing the direction of travel as k  increases.  

If there are any poles going to zeros at infinity, you need to compute the centroid of the asymptotes ( c )  and  

the angles of the asymptotes. 

 

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by 

 hand. 

  

a) ( )cG s k  ( proportional (P) controller) 

 

b) ( )c

k
G s

s
  (an integral (I) controller) 

 

c) 
( )

( )c

k s z
G s

s


  (a proportional + integral (PI) controller) Write the centroid c as a function of z. For what  

values of z will the two asymptotes be in the right half plane? (For plotting purposes, assume z  is equal to 2.) 

 

d) ( ) ( )cG s k s z   (a proportional+derivative (PD) controller)  

e) 1 2( )( )
( )c

k s z s z
G s

s

 
  (a proportional+integral+derivative (PID) controller) Sketch this for the case where 

 both zeros are real and then when both zeros are complex conjugates. 

 

f) 
( )

( )
( )

c

k s z
G s

s p





 ( a lead controller, p z ) Write an expression for c as a function of the distance  

between the pole and the zero, l p z  . What happens to the asymptotes as l  gets larger? (For plotting purposes, 

assume  p is 5 and z is 1.) 
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4) For the following problem, assume we are using the following control system 

 

 

 

 

 

 

 

 

where the plant is given by 

1
( )

3
pG s

s



 

 

Want to determine if it is possible to meet the following constraints 

 

 1secsT   

 Steady state error for a unit step input < 0.1 

 

with P, I, PD, and PID (real zeros and complex conjugate zeros) controllers. For each of these controllers,  

you need to 

 

 Sketch the root locus with arrows showing the direction of travel as k  increases. If there are any poles  

going to zeros at infinity, you need to compute the centroid of the asymptotes ( c ) and the angles of  

the asymptotes. 

 

 State whether it is possible, based only on the closed loop pole locations, to meet the constraints. If it is 

necessary to put constraints on k , p , or z to meet the constraints, you must specify them. (At this point  

you can only put conditions on k to meet the steady state  error constraints.) 

 

 Determine if it is possible for the output to oscillate (nonzero d ) 

 

You may (and should) check your answers with Matlab (use the rlocus command), but you need to do this by 

 hand. 
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5)  Consider the following control system: 

 

 

 

 

 

 

 

 

 

a) If the input to the system is ( ) 8 ( )r t u t , what is the steady state output (think phasors)? 

 

b) If the input to the system is ( ) 8sin(3 ) ( )r t t u t , what is the output in steady state? 

What is the time lag between the input signal and the output signal?  

 

Hint: you can write ( )dt t t      if   is measured in radians. 

Answers: ( ) 8, ( ) 8 10 sin(3 71.57 ), 0.416secdy t y t t t     

 

 

Preparation for Lab 3 

 

(Note: You will have to do something very similar to this on the final exam!) 

 

6) In this problem we are going to be adding a PID controller to your closedloop_driver.m  file. Once 

the PID controller is implemented, we can easily form any of the common controllers (P,I, PI,  and PD) 

by settling coefficients to zero. 

 

You will be using this code and these designs in Lab3, so come prepared! 

 

a) Get the state variable model files for one of your 1 degree of freedom systems. Since you will be 

implementing these controllers during lab 3, if you have any clue at all you and your lab partner will do 

different systems! 

 

You will need to have closedloop_driver.m load the correct state model into the system! 

 

b) Comment out all of the other controllers, and add the lines 

 

kp = 0.2;      % just a dummy value 

ki = 0.02;     % and even dummer value 

kd = 0.002;  % way stupid value 

 

Gc = tf(kp,1) + tf(ki,[1 0]) + tf([kd 0],[1/50 1]); 

 

+ 

- 
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Note that we have modified the derivative controller so that it is in series with a one pole lowpass filter 

with pole at 50 (about 8 Hz). This will help smooth out the derivatives. 

 

c) You will need to be able to determine the PID controller coefficients from the controller. This is 

easiest done by equating coefficients. For example, if the PID controller is given by 
2( )

( )
a s bs c

C s
s

 
  

show that the coefficients are determined by dk a , 
pk ab  , and ik ac . 

 

d) Using Matlab's sisotool, design two PID controllers (with complex conjugate zeros, one with real 

zeros) for your system. Initially limit your gains as in the lab 
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Your resulting design must have a settling time of  1.0 seconds or less and must have a percent 

overshoot of 25% or less. Note that sisotool defaults to an input of 1, that's OK for design purposes. If 

you don't know how to get the correct plant transfer function, run closedloop_driver.m (with the correct 

model file) and it will put the correct transfer function Gp(s) into your Matlab workspace. 

 

e) Implement the PID controllers in closedloop_driver.m. Be sure the saturation limits are set 

appropriately for your ECP system (rectilinear or torsional). Use a step with amplitude 0.5 cm or 10 

degrees (convert to radians!)  in your closedloop_driver.m file. 

 

f) Simulate the system. Plot the control effort only out to 0.2 seconds since the control effort is usually 

largest near the initial time. If your control effort reaches its limits, you need to go back to part (d) and 

modify your designs.  If your control effort is not near the limit, you can increase the gains, particularly 

the derivative gain. 

 

g) Run your simulations for 2.0 seconds. Plot both the system output (from 0 to 2 seconds) and the 

control effort (from 0 to 0.2 seconds). Put a title on your plot to identify kp, ki, and kd. Look at previous 

code to determine how to do this. Turn in your plot. 

 

Since the PID controllers makes the system a type 1 system, we don't need a prefilter to have a steady 

state error of zero. However, sometimes we can use the prefilter to make the transient response a bit 

nicer, or reduce the control effort. However, this is done at the expense of a block outside the control 

loop, which may be bad. Never the less, we continue anyway... 

 

h) Our new transfer function has introduced finite zeros into the closed loop transfer function. We now 

want to use a dynamic prefilter to eliminate these zeros, so long as they are in the left half plane. We 

also need (0) 1pfG  . Hence we have 
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(0)
( )

( )

o
pf

o

D
G s

N s
  

 

For us, we set the prefilter Gpf(s) to den_Go(end)/num_Go. (This should all be done in Matlab! 

Comment out your old code and add this new code.) This will cancel out the zeros of the closed loop 

system. Your numerator polynomial for Go(s), which is denoted as ( )oN s , should be second order. If it is 

not, be sure you have not removed the lines 

 

num_Gp = (abs(num_Gp) > tol*ones(1,length(num_Gp))).*num_Gp; 

 den_Gp = (abs(den_Gp) > tol*ones(1,length(den_Gp))).*den_Gp; 

 

 Rerun part (g) with the dynamic prefiler and turn in your plots. How have the results changed?  

   

Turn in your final code! You should have 4 plots to turn in: Two for the PID with real zeros (with and 

without dynamic prefilters) and two for the PID with complex zeros (with and without prefilters). 

 

 


