ECE-320, Quiz #3

1) For the following system:

the value of the prefilter G_{pf} that produces a steady state error of zero for a unit step input is:

a) 1 b) 3/2 c) 5/2 d) 1/3

Problems 2 and 3 refer to the impulse responses of six different systems given below:

$$h_{1}(t) = [t + e^{-t}]u(t)$$

$$h_{2}(t) = e^{-2t}u(t)$$

$$h_{3}(t) = [2 + \sin(t)]u(t)$$

$$h_{4}(t) = [1 - t^{3}e^{-0.1t}]u(t)$$

$$h_{5}(t) = [1 + t + e^{-t}]u(t)$$

$$h_{6}(t) = [te^{-t}\cos(5t) + e^{-2t}\sin(3t)]u(t)$$

2) The number of	stable systems is	a) 0	b) 1	c) 2	d) 3

3) The number of **unstable systems** is a) 0 b) 1 c) 2 d) 3

4) The <u>unit step response</u> of a system is given by $y(t) = -u(t) - t^4 e^{-t} u(t) + e^{-2t} u(t)$

The steady state error for a unit step input for this system is best estimated as

a) ∞ b) 0.5 c) 2.0 d) impossible to determine

5) The <u>unit ramp response</u> of a system is given by $y(t) = -2u(t) + tu(t) + e^{-t}u(t)$.

The best estimate of the steady state error is

a) 0.5 b) 2.0 c) 1.0 d) ∞

Mailbox _____

Name _____

6) For the following system

the pole of the controller $G_c(s)$ is at -15

the poles of the plant $G_p(s)$ are at -1 and -2

the poles of the closed loop system are at -7.1, -5.43 +3.98j, -5.43 -3.98j

The best estimate of the settling time of the closed loop system is

a) 4 seconds b) $\frac{4}{15}$ seconds c) $\frac{4}{7.1}$ seconds d) $\frac{4}{5.43}$ seconds

7) For the following system:

the value of the prefilter G_{pf} that produces a steady state error of zero for a unit step input is:

8) Which of the following transfer functions represents a stable system?

$$\begin{aligned} G_a(s) &= \frac{s-1}{s+1} & G_b(s) = \frac{1}{s(s+1)} & G_c(s) = \frac{s}{s^2 - 1} \\ G_d(s) &= \frac{s+1}{(s+1+j)(s+1-j)} & G_e(s) = \frac{(s-1-j)(s-1+j)}{s} & G_f(s) = \frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)} \end{aligned}$$

a) all but G_c b) only G_a , G_b , and G_d c) only G_a , G_d , and G_f d) only G_d and G_f e) only G_a and G_d

- Name _____
- 9) Assume we are using model matching to determine the controller in the following system.

The plant is given by $G_p(s) = \frac{s+1}{s^2+2s+2}$

Circle any of the following closed loop transfer functions are acceptable

$$G_A(s) = \frac{s-1}{s+1} \qquad G_B(s) = \frac{s+1}{s^2+2s+2} \qquad G_C(s) = \frac{s-1}{s-3}$$
$$G_D(s) = \frac{s-1}{(s+2)^2} \qquad G_E(s) = \frac{1}{s^2+s+1} \qquad G_F(s) = \frac{1}{s+1}$$

10) Assume we are using model matching to determine the controller in the following system.

The plant is given by $G_p(s) = \frac{s-1}{s+1}$

Circle any of the following closed loop transfer functions are acceptable

$$G_A(s) = \frac{s-1}{s^2+1} \qquad G_B(s) = \frac{s+1}{s^2+2s+2} \qquad G_C(s) = \frac{s+1}{s+3}$$
$$G_D(s) = \frac{s-1}{(s+2)^2} \qquad G_E(s) = \frac{1}{s^2+s+1} \qquad G_F(s) = \frac{1}{s+1}$$

Name _

11) The <u>unit step responses</u> of four systems with real poles is shown below. Which system will have the <u>largest bandwidth</u>?

a) System A b) System B c) System C d) System D

12) The magnitude of the frequency response of four systems with real poles is shown below. Which system will have the smallest <u>settling time</u>?

a) System A b) System B c) System C d) System D

13) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?

a) $T_s \le 1$ b) $T_s \ge 1$ c) $T_s \ge 4$ d) $T_s \le 4$ e) none of these

Mailbox _	
-----------	--

14) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller settling time** for our system?

a) the region in the top figure b) the region in the bottom figure

Name _

15) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a **smaller time to peak** for our system?

a) the region in the top figure b) the region in the bottom figure

16) One of the shaded regions below shows the possible pole locations for a percent overshoot less than 10%, and the other shows the possible pole locations for a percent overshoot less than 20%. Which of the two graphs shows the possible pole locations for a percent overshoot less than 20%?

