$\qquad$
$\qquad$

## ECE-320, Quiz \#3

1) For the following system:

the value of the prefilter $G_{p f}$ that produces a steady state error of zero for a unit step input is:
a) 1
b) $3 / 2$
c) $5 / 2$
d) $1 / 3$

Problems 2 and 3 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[t+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

2) The number of stable systems is
a) 0
b) 1
c) 2
d) 3
3) The number of unstable systems is
a) 0
b) 1
c) 2
d) 3
4) The unit step response of a system is given by $y(t)=-u(t)-t^{4} e^{-t} u(t)+e^{-2 t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) $\infty$
b) 0.5
c) 2.0
d) impossible to determine
5) The unit ramp response of a system is given by $y(t)=-2 u(t)+t u(t)+e^{-t} u(t)$.

The best estimate of the steady state error is
a) 0.5
b) 2.0
c) 1.0
d) $\infty$
$\qquad$
$\qquad$
6) For the following system

the pole of the controller $G_{c}(s)$ is at - 15
the poles of the plant $G_{p}(s)$ are at -1 and -2
the poles of the closed loop system are at $-7.1,-5.43+3.98 \mathrm{j},-5.43-3.98 \mathrm{j}$
The best estimate of the settling time of the closed loop system is
a) 4 seconds
b) $\frac{4}{15}$ seconds
c) $\frac{4}{7.1}$ seconds
d) $\frac{4}{5.43}$ seconds
7) For the following system:

the value of the prefilter $G_{p f}$ that produces a steady state error of zero for a unit step input is:
a) 1
b) $3 / 2$
c) 4
d) $1 / 3$
8) Which of the following transfer functions represents a stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)}$
$G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s}$
$G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but $G_{c}$
b) only $G_{a}, G_{b}$, and $G_{d}$
c) only $G_{a}, G_{d}$, and $G_{f}$
d) only $G_{d}$ and $G_{f}$
e) only $G_{a}$ and $G_{d}$
$\qquad$
$\qquad$
9) Assume we are using model matching to determine the controller in the following system.


The plant is given by $G_{p}(s)=\frac{s+1}{s^{2}+2 s+2}$
Circle any of the following closed loop transfer functions are acceptable

$$
\begin{array}{lll}
G_{A}(s)=\frac{s-1}{s+1} & G_{B}(s)=\frac{s+1}{s^{2}+2 s+2} & G_{C}(s)=\frac{s-1}{s-3} \\
G_{D}(s)=\frac{s-1}{(s+2)^{2}} & G_{E}(s)=\frac{1}{s^{2}+s+1} & G_{F}(s)=\frac{1}{s+1}
\end{array}
$$

10) Assume we are using model matching to determine the controller in the following system.


The plant is given by $G_{p}(s)=\frac{s-1}{s+1}$
Circle any of the following closed loop transfer functions are acceptable

$$
\begin{array}{lll}
G_{A}(s)=\frac{s-1}{s^{2}+1} & G_{B}(s)=\frac{s+1}{s^{2}+2 s+2} & G_{C}(s)=\frac{s+1}{s+3} \\
G_{D}(s)=\frac{s-1}{(s+2)^{2}} & G_{E}(s)=\frac{1}{s^{2}+s+1} & G_{F}(s)=\frac{1}{s+1}
\end{array}
$$

$\qquad$
$\qquad$
11) The unit step responses of four systems with real poles is shown below. Which system will have the largest bandwidth?
a) System A
b) System B
c) System C
d) System D




$\qquad$
$\qquad$
12) The magnitude of the frequency response of four systems with real poles is shown below. Which system will have the smallest settling time?
a) System A
b) System B
c) System C
d) System D


System C


System B


System D

$\qquad$
$\qquad$
13) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $T_{s} \leq 1$
b) $T_{s} \geq 1$
c) $T_{s} \geq 4$
d) $T_{s} \leq 4$
e) none of these

$\qquad$
$\qquad$
14) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a smaller settling time for our system?
a) the region in the top figure b) the region in the bottom figure


$\qquad$
$\qquad$
15) Assuming we are allowed to place our poles only in the (dark) shaded areas, which of the following two shaded regions will in general result in a smaller time to peak for our system?
a) the region in the top figure
b) the region in the bottom figure

$\qquad$
$\qquad$
16) One of the shaded regions below shows the possible pole locations for a percent overshoot less than $10 \%$, and the other shows the possible pole locations for a percent overshoot less than $20 \%$. Which of the two graphs shows the possible pole locations for a percent overshoot less than $20 \%$ ?
a) the region in the top figure
b) the region in the bottom figure



