ECE-320, Practice Quiz \#3

1) For the following system:

the value of the prefilter $G_{p f}$ that produces a steady state error of zero for a unit step input is:
a) 1
b) $3 / 2$
c) $5 / 2$
d) $1 / 3$

Problems 2 and 3 refer to the impulse responses of six different systems given below:

$$
\begin{aligned}
& h_{1}(t)=\left[1+e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=[2+\sin (t)] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

2) The number of maginally stable systems is \quad a) $0 \quad$ b) 1 c) 2 d) 3
3) The number of unstable systems is
a) 0
b) 1
c) 2
d) 3
4) The unit step response of a system is given by $y(t)=0.5 u(t)-t u(t)-t^{4} e^{-t} u(t)+e^{-t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) ∞
b) 0.5 c) 2.0
d) impossible to determine
5) The unit step response of a system is given by $y(t)=0.5 u(t)-t^{4} e^{-t} u(t)+e^{-t} u(t)$

The steady state error for a unit step input for this system is best estimated as
a) ∞
b) 0.5 c) 2.0
d) impossible to determine
6) The unit ramp response of a system is given by $y(t)=-0.5 u(t)+t u(t)+e^{-t} u(t)$.

The best estimate of the steady state error is
a) 0.5
b) 2.0
c) 1.0
d) ∞
7) Assume we are using model matching to determine the controller in the following system.

The plant is given by $G_{p}(s)=\frac{(s+1)(s-1)}{s^{2}+2 s+2}$
Which of the following candidate closed loop transfer functions are acceptable?

$$
\begin{array}{lll}
G_{A}(s)=\frac{s-1}{s+1} & G_{B}(s)=\frac{s+1}{s^{2}+2 s+2} & G_{C}(s)=\frac{s-1}{s-3} \\
G_{D}(s)=\frac{s-1}{(s+2)^{2}} & G_{E}(s)=\frac{1}{s^{2}+s+1} & G_{F}(s)=1
\end{array}
$$

a) G_{A}, G_{C}, and G_{D}
b) only G_{B}
c) G_{A} and G_{D}
d) G_{E} and G_{F}
8) For the following system

the pole of the controller $G_{c}(s)$ is at -15
the poles of the plant $G_{p}(s)$ are at -1 and -2
the poles of the closed loop system are at $-7.1,-5.43+3.98 \mathrm{j},-5.43-3.98 \mathrm{j}$
The best estimate of the settling time of the closed loop system is
a) 4 seconds
b) $\frac{4}{15}$ seconds
c) $\frac{4}{7.1}$ seconds
d) $\frac{4}{5.43}$ seconds
9) The unit step responses of four systems with real poles is shown below. Which system will have the largest bandwidth?
a) System A
b) System B
c) System C
d) System D

10) Which of the following transfer functions represents a stable system?
$G_{a}(s)=\frac{s-1}{s+1}$
$G_{b}(s)=\frac{1}{s(s+1)}$
$G_{c}(s)=\frac{s}{s^{2}-1}$
$G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} \quad G_{e}(s)=\frac{(s-1-j)(s-1+j)}{s}$
$G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}$
a) all but G_{c}
b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f}
d) only G_{d} and G_{f}
e) only G_{a} and G_{d}
11) For the block diagram below, the value of the prefilter $G_{p f}$ that produces zero steady state error for a unit step input is:
a) 1
b) $3 / 2$
c) 3
d) $1 / 3$

Problems 12 and 13 refer to the following impulse responses of six different systems

$$
\begin{aligned}
& h_{1}(t)=\left[t e^{-t}\right] u(t) \\
& h_{2}(t)=e^{-2 t} u(t) \\
& h_{3}(t)=\left[2 e^{-2 t}+t^{3} \sin (t)\right] u(t) \\
& h_{4}(t)=\left[1-t^{3} e^{-0.1 t}\right] u(t) \\
& h_{5}(t)=\left[1+t+e^{-t}\right] u(t) \\
& h_{6}(t)=\left[t e^{-t} \cos (5 t)+e^{-2 t} \sin (3 t)\right] u(t)
\end{aligned}
$$

12) The number of unstable systems is
a) 1
b) 2
c) 3
d) 4
13) The number of marginally stable systems is
a) 1
b) 2
c) 3
d) 4
14) Assume we are using model matching to determine the controller in the following system.

The plant is given by $\quad G_{p}(s)=\frac{-1}{s^{2}+2 s+2}$
Which of the following candidate closed loop transfer functions are acceptable?

$$
\begin{array}{ll}
G_{A}(s)=\frac{s-1}{s^{2}+1} & G_{B}(s)=\frac{s+1}{s^{2}+2 s+2} \quad G_{C}(s)=\frac{s-1}{s-3} \\
G_{D}(s)=\frac{5}{(s+2)^{2}} & G_{E}(s)=\frac{1}{s^{2}+s+1}
\end{array}
$$

Circle all that apply:
a) G_{A}
b) G_{B}
c) G_{C}
d) G_{D}
e) G_{E}
15) Which of the following transfer functions represents a stable system?

$$
\begin{array}{lll}
G_{a}(s)=\frac{s-1}{s+1} & G_{b}(s)=\frac{s}{(s+1)} & G_{c}(s)=\frac{s}{s^{2}-1} \\
G_{d}(s)=\frac{s+1}{(s+1+j)(s+1-j)} & G_{e}(s)=\frac{(s-1-j)(s-1+j)}{(s+2)^{2}} & G_{f}(s)=\frac{(s-1-j)(s-1+j)}{(s+1-j)(s+1+j)}
\end{array}
$$

a) all but G_{c} b) only G_{a}, G_{b}, and G_{d} c) only G_{a}, G_{d}, and G_{f} d) only G_{d} and G_{f}
e) only G_{a} and G_{d}
16) The unit step responses of four systems with real poles is shown below. Which system will have the largest bandwidth?
a) System A
b) System B
c) System C
d) System D

17) The magnitude of the frequency response of four systems with real poles is shown below.

Which system will have the smallest settling time?
a) System A
b) System B
c) System C
d) System D

System C

System B

System D

18) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $T_{s} \leq 1$
b) $T_{s} \geq 1$
c) $T_{s} \geq 4$
d) $T_{s} \leq 4$
e) none of these

19) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $T_{p} \leq 1$
b) $T_{p} \geq 1$
c) $T_{p} \geq \pi$
d) $T_{p} \leq \pi$
e) none of these

20) The (dark) shaded area in the s-plane figure below shows the possible pole location for an ideal second order system that meets which of the following constraints?
a) $P O \geq 20 \%$
b) $P O \leq 20 \%$

Problems 21-23 refer to the figure below, which shows the unit step response of a real 2nd order system and the unit step response of a second order model we are trying to match to the real system.

21) In order to make the model better match the real system, the damping ratio of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine
22) In order to make the model better match the real system, the natural frequency of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine
23) In order to make the model better match the real system, the static gain of the model should be
a) increased
b) decreased
c) left alone
d) impossible to determine

Answers: 1-c, 2-d, 3-b, 4-a,5-b
6-a,7-c,8-d,
9-с,
10-c, 11-a, 12-b, 13-a,
14-d and e, 15-a,
16-b,
17-d,
18-d, 19-d,
20-b,
21-b, 22-b, 23-b

