
ECE-320: Linear Control Systems 
Homework 6 

 
Due: Thursday April 22 at the beginning of class   
 
1) For the system shown below, with the lag compensator (z > p): 
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b) Include the lag compensator, with z = 0.1, so the steady state error will be 0.01. (Answer: p = 0.0025). 
 
 
2) For the system shown below: 
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Assume we want to use the lag compensator so that the steady state error for a unit ramp is 0.1sse =  We 
will be varying the locations of the pole and zero of the lag compensator to accomplish this, and will 
look at the effects of these changes on both the unit step response and the unit ramp response.  For each 
of the simulations below, run the simulation to 35 seconds. For z = 0.1, 0.01, and 0.001 

• Find the correct value for p to produce the required steady state error. 
• Using Matlab, simulate the unit step response for the original system (without the lag 

compensator) and with the lag compensator. Plot both results on one graph, as well as the input 
signal, using different line styles and a legend. Use the subplot command to put this on the top of 
the page.  

• Using Matlab, simulate the unit ramp response for both the original system and the system with 
the lag compensator. Plot both results on one graph, as well as the input signal, using different 
line styles and a legend. Use the subplot command to put this on the bottom of the page.  

 
You should notice that the large the value of z, the quicker the steady state error for a unit ramp is 
reduced. However, this is at the expense of large changes in the step response. 
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3)  One of the things that will be coming up in lab more and more is the limitation of the amplitude of 
the control signal, or the control effort. This is also a problem for most practical systems. In this problem 
we will do some simple analysis to better understand why Matlab's sisotool won't give us a good 
estimate of the control effort for some types of systems, and why dynamic prefilters can often really help 
us out here. 
 
a) For the system below, 
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 show that U(s) and R(s) are related by 
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b) For many types of controllers, the maximum value of the control signal is just after the step is 
applied, at .  Although most of the time we are concerned with steady state values and use the 
final value Theorem in the s-plane, in this case we want to use the initial value Theorem, which can be 
written as 
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If the system input is a step of amplitude A, show that  
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This result shows very clearly that the initial control signal is directly proportional to the amplitude of 
the input signal, which is pretty intuitive. 
 
c) Now let's assume  
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If we want to look at the initial value for a unit step, we need to look at 
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Let's also then define 
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and 
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where deg is the degree of polynomial Y. Y
 
d) Since we are going to take the limit as , we need the degree of  to be less than or equal to 
zero for a step input to have a finite u

s →∞
)

( )U s
(0+ . Why? 

 
For our 1 dof systems in lab, we have deg 0pN =  and deg 2pD = . Use this for the remainder of this 
problem 
 
e) If the prefilter is a constant, show that in order to have a finite (0 )u + we must have 
 

deg degc cD N≥  
f) If the numerator of the prefilter is a constant, then in order to have a finite  we must have (0 )u +

 
deg deg deg 0c c pfD N D− + ≥  or 2 deg 0pfD− + ≥  

 
g) For P, I, D, PI, PD, PID, and lead controllers, determine if (0 )u +  is finite if the prefilter is a constant. 
 
Note: Although it may appear that the control effort is sometimes infinite, in practice this is not true 
since our motor cannot produce an infinite signal. This large initial control signal is referred to as a set- 
point kick. There are different ways to implement a PID controller to avoid this, and we will cover two 
of them in Lab 6. 
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4) For the following block diagram, 
 
 
 
 
  
 
 
 
 
 
 
 
show that the transfer function from input to output is given by  
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This is the structure we will use in Lab for the PI-D and I-PD controllers. 
 
5)  Consider the plant  
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where 3 is the nominal value of 0α  and 0.5 is the nominal value of 1α . In this problem we will 
investigate the sensitivity of closed loop systems with various types of controllers to these two 
parameters. We will assume we want the settling time of our system to be 0.5 seconds and the steady 
state error for a unit step input to be less than 0.1. 
 
a)  (ITAE Model Matching) Since this is a first order system, we will use the first order ITAE model, 

( ) o
o

o

G s
s
ω
ω

=
+

 

i) For what value of oω will we meet the settling time requirements and the steady state error 
requirements? 
 
ii) Determine the corresponding controllerG . ( )c s
 
iii) Show that the closed loop transfer function (using the parameterized form of  and the 
controller from part ii) is 
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iv) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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v) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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b) (Proportional Control) Consider a proportional controller, with 2.5pk = . 
 
i) Show that the closed loop transfer function is 
 

0

1 0

2.5( )
2.5oG s

s
α

α α
=

+ +
 

ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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c) (Proportional+Integral Control) Consider a PI controller with 4pk =  and . 40ik =
 
i) Show that the closed loop transfer function is 
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ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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d) Using Matlab, simulate the unit step response of each type of controller. Plot all responses on one 
graph. Use different line types and a legend. Turn in your plot and code. 
 
g) Using Matlab and subplot, plot the sensitivity to 0α  for each type of controller on one graph at the 
top of the page, and the sensitivity to 1α  on one graph on the bottom of the page. Be sure to use 
different line types and a legend.  Turn in your plot and code. Only plot up to about 8 Hz (50 rad/sec) 
using a semilog scale with the sensitivity in dB (see below). Do not make separate graphs for each 
system! 
 
In particular, these results should show you that the model matching method, which essentially tries and 
cancel the plant, are generally more sensitive to getting the plant parameters correct than the PI  
controller for low frequencies. However, for higher frequencies the methods are all about the same.  

Hint: If 2
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2 10
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,  plot the magnitude of the frequency response using: 

 
T = tf([2 0],[1 2 10]); 
w = logspace(-1,1.7,1000); 
[M,P]= bode(T,w); 
Mdb = 20*log10(M(:)); 
semilogx(w,Mdb); grid; 
xlabel('Frequency (rad/sec)'); 
ylabel('dB'); 
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