Due: Tuesday March 30 at the beginning of class

1) For the following systems
a) Determine the system type $(0,1,2, \ldots)$
b) If the system is type 0 assume $G_{p f}=1$ and determine the position error constant K_{p} and the steady state error for a unit step input. Then determine the value of $G_{p f}$ to make this error zero. If the system is type 1, assume $G_{p f}=1$ and determine the steady state error for a unit step, the velocity error constant K_{v}, and the steady state error for a unit ramp. Is there any constant value of $G_{p f}$ that can change the steady state error for a ramp?
Ans. (steady state errors) $-\frac{3}{2}, \frac{3}{13},-\frac{3}{5}, \frac{1}{2}$; (prefilers) $\frac{2}{5}, \frac{13}{10}, G_{p f}$ has no effect

2) Consider the following control system.

We can compute the position error constant K_{p} as $K_{p}=G_{c}(0) G_{p}(0)$
a) Determine an expression for the closed loop transfer function (from input to output) $G_{o}(s)$ in terms of $G_{p f}, G_{c}(s)$, and $G_{p}(s)$.
b) For a steady state error of zero for a step input we want $G_{o}(0)=1$. Use this information to show that we can determine the prefilter gain to be

$$
G_{p f}=1+\frac{1}{K_{p}}
$$

c) We can find the steady state error for a unit step input as $e_{s s}=\frac{1}{1+K_{p}}$. Using this, show that we can determine the prefilter gain to be

$$
G_{p f}=\frac{1}{1-e_{s s}}
$$

Note that if $K_{p}=\infty$ (or equivalently $e_{s s}=0$), we get $G_{p f}=1$)
3) Consider the following control system:

a) If the input to the system is $r(t)=8 u(t)$, what is the steady state output?
b) If the input to the system is $r(t)=8 \sin (3 t) u(t)$, what is the output in steady state?

What is the time lag between the input signal and the output signal?
Hint: you can write $\omega t-\theta=\omega\left(t-t_{d}\right)$ if θ is measured in radians.
Answers: $\quad y(t)=8, y(t)=8 \sqrt{10} \sin \left(3 t-71.57^{\circ}\right), t_{d}=0.416 \mathrm{sec}$

