ECE-320

Equation Sheet

Second Order System Properties

Percent Overshoot: P.O. $=e^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}} \times 100 \%$, If $\beta=\frac{P O^{\max }}{100}$ then $\zeta=\frac{\frac{-\ln (\beta)}{\pi}}{\sqrt{1+\left(\frac{-\ln (\beta)}{\pi}\right)^{2}}}, \theta=\cos ^{-1}(\zeta)$
Time to Peak: $T_{p}=\frac{\pi}{\omega_{d}}, \quad \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} \quad 2 \%$ Settling Time: $T_{s}=\frac{4}{\zeta \omega_{n}}=4 \tau$

Model Matching

Assume we have a proper plant $G_{p}(s)=N(s) / D(s)$ and we want the closed loop system to have the transfer function $G_{o}(s)=N_{0}(s) / D_{0}(s)$. We can find a controller

$$
G_{c}(s)=\frac{N_{0}(s) D(s)}{N(s)\left[D_{0}(s)-N_{0}(s)\right]}
$$

under the following conditions:

- degree $D_{0}(s)$ - degree $N_{0}(s) \geq$ degree $D(s)$ - degree $N(s)$
- The right half plane zeros of $N(s)$ are retained in $N_{0}(s)$
- $G_{0}(s)$ is stable

Controller Types

Proportional (P), $G_{c}(s)=k$
$\operatorname{Integral}(\mathrm{I}), G_{c}(s)=\frac{k}{s}$
Proportional + Integral (PI), $G_{c}(s)=\frac{k(s+z)}{s}$
Proportional + Derivative (PD), $G_{c}(s)=k(s+z)$
Proportional + Integral + Derivative (PID), $G_{c}(s)=\frac{k\left(s+z_{1}\right)\left(s+z_{2}\right)}{s}$
Lead, $G_{c}(s)=\frac{k(s+z)}{(s+p)}, \quad p>z$
Lag, $G_{c}(s)=\frac{k(s+z)}{(s+p)}, \quad z>p$

Root Locus Construction

Once each pole has been paired with a zero, we are done

1. Loci Branches

$$
\underset{k=0}{\text { poles }} \rightarrow \underset{k=\infty}{\text { zeros }}
$$

Continuous curves, which comprise the locus, start at each of the n poles of $G(s)$ for which $k=0$. As k approaches ∞, the branches of the locus approach the m zeros of $G(s)$. Locus branches for excess poles extend to infinity.

The root locus is symmetric about the real axis.

2. Real Axis Segments

The root locus includes all points along the real axis to the left of an odd number of poles plus zeros of $G(s)$.

3. Asymptotic Angles

As $k \rightarrow \infty \$ \mathrm{k}$, the branches of the locus become asymptotic to straight lines with angles

$$
\theta=\frac{180^{\circ}+i 360^{\circ}}{n-m}, i=0, \pm 1, \pm 2, . .
$$

until all ($n-m$) angles not differing by multiples of 360° are obtained. n is the number of poles of $G(s)$ and m is the number of zeros of $G(s)$.

4. Centroid of the Asymptotes

The starting point on the real axis from which the asymptotic lines radiate is given by

$$
\sigma_{c}=\frac{\sum_{i} p_{i}-\sum_{j} z_{j}}{n-m}
$$

where p_{i} is the $i^{\text {th }}$ pole of $G(s), z_{j}$ is the $j^{\text {th }}$ zero of $G(s), n$ is the number of poles of $G(s)$ and m is the number of zeros of $G(s)$. This point is termed the centroid of the asymptotes.

5. Leaving/Entering the Real Axis

When two branches of the root locus leave or enter the real axis, they usually do so at angles of $\pm 90^{\circ}$.

Laplace Transforms

$$
\begin{aligned}
& \mathcal{L}\{\delta(t)\}=1 \\
& \mathcal{L}\{u(t)\}=\frac{1}{s} \\
& \mathcal{L}\{t u(t)\}=\frac{1}{s^{2}} \\
& \mathcal{L}\left\{\frac{t^{m-1}}{(m-1)!} u(t)\right\}=\frac{1}{s^{m}} \\
& \mathcal{L}\left\{e^{-a t} u(t)\right\}=\frac{1}{s+a} \\
& \mathcal{L}\left\{t e^{-a t} u(t)\right\}=\frac{1}{(s+a)^{2}} \\
& \mathcal{L}\left\{\frac{t^{(m-1)}}{(m-1)!} e^{-a t} u(t)\right\}=\frac{1}{(s+a)^{m}} \\
& \mathcal{L}\left\{\cos \left(\omega_{0} t\right) u(t)\right\}=\frac{s}{s^{2}+\omega_{0}^{2}} \\
& \mathcal{L}\left\{\sin \left(\omega_{0} t\right) u(t)\right\}=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \\
& \mathcal{L}\left\{e^{-\alpha t} \cos \left(\omega_{0} t\right) u(t)\right\}=\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{0}^{2}} \\
& \mathcal{L}\left\{e^{-\alpha t} \sin \left(\omega_{0} t\right) u(t)\right\}=\frac{\omega_{0}}{(s+\alpha)^{2}+\omega_{0}^{2}} \\
& \mathcal{L}\left\{\frac{d x(t)}{d t}\right\}=s X(s)-x\left(0^{-}\right) \\
& \mathcal{L}\left\{\frac{d^{2} x(t)}{d t^{2}}\right\}=s^{2} X(s)-s x\left(0^{-}\right)-\dot{x}\left(0^{-}\right) \\
& \mathcal{L}\{x(t-a)\}=e^{-a s} X(s) \\
& \mathcal{L}\left\{e^{-a t} x(t)\right\}=X(s+a) \\
& \mathcal{L}\left\{x\left(\frac{t}{a}\right), a>0\right\}=a X(a s) \\
&
\end{aligned}
$$

