
Notes for ECE-320

Spring 2006

by
R. Throne

The following pages contain a third attempt at writing notes for ECE-320. The topics we cover
in ECE-320 are not covered in any single book. These notes are not complete, especially the
sections on design using Bode plots.

The major sources for these notes are

• Analog and Digital Control System Design, by C. T. Chen. Sanders College Publishing.
1993.

• Linear Control Systems, by Rohrs, Melsa, and Schulz. McGraw-Hill, 1993.

• Modern Control Engineering, by Ogata. Prentice-Hall, 2002.

• Modern Control Systems, by Dorf and Bishop. Prentice-Hall, 2005.

1

Contents

1 Table of Laplace Transforms 5

2 Laplace Transform Review 6
2.1 Poles and Zeros . 6
2.2 Proper and Strictly Proper Transfer Functions 6
2.3 Impulse Response and Transfer Functions . 6
2.4 Partial Fractions with Distinct Poles . 7
2.5 Partial Fractions with Distinct and Repeated Poles 10
2.6 Complex Conjugate Poles: Completing the Square 15
2.7 Common Denominator/Cross Multiplying . 20
2.8 Complex Conjugate Poles-Again . 22

3 Final Value Theorem and the Static Gain of a System 23

4 Step Response, Ramp Response, and Steady State Errors 25
4.1 Step Response and Steady State Error . 25
4.2 Ramp Response and Steady State Error . 29
4.3 Summary . 32

5 Response of a Ideal Second Order System 34
5.1 Step Response of an Ideal Second Order System 34
5.2 Time to Peak, Tp . 35
5.3 Percent Overshoot, PO . 36
5.4 Settling Time, Ts . 37
5.5 Constraint Regions in the s-Plane . 39
5.6 Summary . 46

6 Characteristic Polynomial, Modes, and Stability 48
6.1 Characteristic Polynomial, Equation, and Modes 48
6.2 Characteristic Mode Reminders . 49
6.3 Stability . 50
6.4 Settling Time and Dominant Poles . 50

7 Time Domain Response and System Bandwidth 52

8 Basic Feedback Configuration 60

9 Model Matching 61
9.1 ITAE Optimal Systems . 63
9.2 Deadbeat Systems . 64
9.3 Quadratic Optimal Systems . 65
9.4 Dynamic Prefilters . 69
9.5 Type One Systems . 72
9.6 Frequency Response Matching . 74
9.7 Summary and Caveates . 84

2

10 System Type and Steady State Errors 85
10.1 Review . 85
10.2 System Type For a Unity Feedback Configuration 85
10.3 Steady State Errors for Step and Ramp Inputs 86
10.4 Examples . 87

11 Controller Design Using the Root Locus 91
11.1 Standard Root Locus Form . 91
11.2 Examples . 93
11.3 Loci Branches . 94
11.4 Real Axis Segments . 95
11.5 Asymptotic Angles and Centroid of the Asymptotes 100
11.6 Common Industrial Controller Types . 110
11.7 Controller and Design Constraint Examples . 112
11.8 Seemingly Odd Root Locus Behavior . 136

12 Pole Placement By Matching Coefficients: Diophantine Equations 139
12.1 Theoretical Background . 140
12.2 Pole Placement with Robust Tracking . 143
12.3 Summary . 145

13 System Sensitivity 146
13.1 Sensitivity to Parameter Variations . 146
13.2 Sensitivity to External Disturbances . 151
13.3 Summary . 152

14 The Routh-Hurwitz Stability Criteria 153
14.1 No Element in the First Column is Zero . 154
14.2 First Column Contains a Zero . 158
14.3 Entire Row is Zero . 159

15 State Variables and State Variable Feedback 161
15.1 State Variable to Transfer Function Model . 163
15.2 State Variable Feedback . 166
15.3 Controllability for State Variable Systems . 171
15.4 Summary . 172

16 Linearization 173
16.1 Linear Systems . 173
16.2 Taylor Series . 173
16.3 Linearization Procedure . 174

A Matlab Commands i
A.1 Figures . i
A.2 Transfer Functions . i
A.3 Feedback Systems . ii
A.4 System Response to Arbitrary Inputs . ii

3

A.5 Changing the Line Thickness . iii
A.6 Poles and Zeros . iv
A.7 Roots and Polynomials . iv
A.8 Root Locus Plots . v
A.9 Bode Plots, Gain and Phase Margins . v

4

1 Table of Laplace Transforms

f (t) F (s)
δ(t) 1

u(t) 1
s

tu(t) 1
s2

tn−1

(n−1)!u(t) (n = 1, 2, 3...) 1
sn

tnu(t) (n = 1, 2, 3, ...) n!
sn+1

e−atu(t) 1
s+a

te−atu(t) 1
(s+a)2

1
(n−1)!t

n−1e−atu(t) (n = 1, 2, 3, ...) 1
(s+a)n

tne−atu(t) (n = 1, 2, 3, ...) n!
(s+a)n+1

sin(bt)u(t) b
s2+b2

cos(bt)u(t) s
s2+b2

e−at sin(bt)u(t) b
(s+a)2+b2

e−at cos(bt)u(t) (s+a)
(s+a)2+b2

5

2 Laplace Transform Review

In this course we will be using Laplace transforms extensively. Although we do not often go
from the s-plane to the time domain, it is important to be able to do this and to understand
what is going on. In what follows is a brief review of some results with Laplace transforms.

2.1 Poles and Zeros

Assume we have the transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. The roots of N(s) are the
zeros of the system, while the roots of D(s) are the poles of the system.

2.2 Proper and Strictly Proper Transfer Functions

The transfer function

H(s) =
N(s)

D(s)

is proper if the degree of the polynomial N(s) is less than or equal to the degree of the poly-
nomial D(s). The transfer function H(s) is strictly proper if the degree of N(s) is less than
the degree of D(s).

2.3 Impulse Response and Transfer Functions

If H(s) is a transfer function, the inverse Laplace transform of H(s) is call the impulse response,
h(t).

L{h(t)} = H(s)

h(t) = L−1{H(s)}

6

2.4 Partial Fractions with Distinct Poles

Let’s assume we have a transfer function

H(s) =
N(s)

D(S)
=

N(s)

D(s)
=

K(s + z1)(s + z2)...(s + zm)

(s + p1)(s + p2)...(s + pn)

where we assume m < n (this makes H(s) a strictly proper transfer function). The poles of
the system are at −p1, −p2, ... − pn and the zeros of the system are at −z1, −z2, ... − zm.
Since we have distinct poles, pi 6= pj for all i and j. Also, since we assumed N(s) and D(s) have
no common factors, we know that zi 6= pj for all i and j.
We would like to find the corresponding impulse response, h(t). To do this, we assume

H(s) =
N(s)

D(s)
= a1

1

s + p1

+ a2
1

s + p2

+ ... + an
1

s + pn

If we can find the ai, it will be easy to determine h(t) since the only inverse Laplace transform
we need is that of 1

s+p
, and we know (or can look up) 1

s+p
↔ e−ptu(t). To find a1, we first

multiply by (s + p1),

(s + p1)H(s) = a1 + a2
s + p1

s + p2

+ ... + an
s + p1

s + pn

and then let s → −p1. Since the poles are all distinct, we will get

lim
s→−p1

(s + p1)H(s) = a1

Similarly, we will get

lim
s→−p2

(s + p2)H(s) = a2

and in general

lim
s→−pi

(s + pi)H(s) = ai

Example 1. Let’s assume we have

H(s) =
s + 1

(s + 2)(s + 3)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s + 1)

(s + 2)(s + 3)
= a1

1

s + 2
+ a2

1

s + 3

Then

a1 = lim
s→−2

(s + 2)
(s + 1)

(s + 2)(s + 3)
= lim

s→−2

(s + 1)

(s + 3)
=
−1

1
= −1

7

and

a2 = lim
s→−3

(s + 3)
(s + 1)

(s + 2)(s + 3)
= lim

s→−3

(s + 1)

(s + 2)
=
−2

−1
= 2

Then

H(s) = −1
1

s + 2
+ 2

1

s + 3

and hence

h(t) = −e−2tu(t) + 2e−3tu(t)

It is often unnecessary to write out all of the steps in the above example. In particular, when
we want to find ai we will always have a cancellation between (s + pi) in the numerator with
the (s + pi) in the denominator. Using this fact, when we want to find ai we can just ignore (or
cover up) the factor (s + pi) in the denominator. For our example above, we then have

a1 = lim
s→−2

(s + 1)

(s + 3)
=
−1

1
= −1

a2 = lim
s→−3

(s + 1)

(s + 2)
=
−2

−1
= 2

where we have covered up the poles associated with a1 and a2, respectively.

Example 2. Let’s assume we have

H(s) =
s2 − s + 2

(s + 2)(s + 3)(s + 4)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s2 − s + 2)

(s + 2)(s + 3)(s + 4)
= a1

1

s + 2
+ a2

1

s + 3
+ a3

1

s + 4

Using the cover up method, we then determine

a1 = lim
s→−2

(s2 − s + 2)

(s + 3)(s + 4)
=

8

(1)(2)
= 4

a2 = lim
s→−3

(s2 − s + 2)

(s + 2) (s + 4)
=

14

(−1)(1)
= −14

a3 = lim
s→−4

(s2 − s + 2)

(s + 2)(s + 3)
=

22

(−2)(−1)
= 11

and hence

h(t) = 4e−2tu(t)− 14e−3tu(t) + 11e−4tu(t)

8

Example 3. Let’s assume we have

H(s) =
1

(s + 1)(s + 5)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
1

(s + 1)(s + 5)
= a1

1

s + 1
+ a2

1

s + 5

Using the coverup method, we then determine

a1 = lim
s→−1

1

(s + 5)
=

1

4

a2 = lim
s→−5

1

(s + 1)
=

1

−4

and hence

h(t) =
1

4
e−tu(t)− 1

4
e−5tu(t)

Although we have only examined real poles, this method is also valid for complex poles, although
there are usually easier ways to deal with complex poles, as we’ll see.

9

2.5 Partial Fractions with Distinct and Repeated Poles

Whenever there are repeated poles, we need to use a different form for the partial fractions for
those poles. This is probably most easily explained by means of examples.

Example 4. Assume we have the transfer function

H(s) =
1

(s + 1)(s + 2)2

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
1

(s + 1)(s + 2)2
= a1

1

s + 1
+ a2

1

s + 2
+ a3

1

(s + 2)2

Example 5. Assume we have the transfer function

H(s) =
s + 1

s2(s + 2)(s + 3)

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
s + 1

s2(s + 2)(s + 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s + 2
+ a4

1

s + 3

Note that there are always as many unknowns (the ai) as the degree of the denominator polynomial.

Now we need to be able to determine the expansion coefficients. We already know how to do
this for distinct poles, so we do those first.
For Example 4,

a1 = lim
s→−1

1

(s + 2)2
=

1

1
= 1

For Example 5,

a3 = lim
s→−2

s + 1

s2 (s + 3)
=

−1

(−2)2(1)
= −1

4

a4 = lim
s→−3

s + 1

s2(s + 2)
=

−2

(−3)2(−1)
=

2

9

The next set of expansion coefficients to determine are those with the highest power of the
repeated poles.

For Example 4, multiply though by (s + 2)2 and let s → −2,

a3 = lim
s→−2

(s + 2)2 1

(s + 1)(s + 2)2
= lim

s→−2

1

s + 1
= −1

10

or with the coverup method

a3 = lim
s→−2

1

(s + 1)
=

1

−1
= −1

For Example 5, multiply though by s2 and let s → 0

a2 = lim
s→0

s2 s + 1

s2(s + 2)(s + 3)
= lim

s→0

s + 1

(s + 2)(s + 3)
=

1

6

or with the coverup method

a2 = lim
s→0

s + 1

(s + 2)(s + 3)
=

1

6
=

1

6

So far we have:

for Example 4

1

(s + 1)(s + 2)2
=

1

s + 1
+ a2

1

s + 2
− 1

(s + 2)2

and for Example 5

s + 1

s2(s + 2)(s + 3)
= a1

1

s
+

1

6

1

s2
− 1

4

1

s + 2
+

2

9

1

s + 3

We now need to determine any remaining coefficients. There are two common ways of doing
this, both of which are based on the fact that both sides of the equation must be equal for any
value of s. The two methods are

1. Multiply both sides of the equation by s and let s → ∞. If this works it is usually very
quick.

2. Select convenient values of s and evaluate both sides of the equation for these values of s

For Example 4, using Method 1,

lim
s→∞

[
s

1

(s + 1)(s + 2)2

]
= lim

s→∞

[
s

s + 1
+ a2

s

s + 2
− s

(s + 2)2

]

or

0 = 1 + a2 + 0

so a2 = -1.

For Example 5, using Method 1,

lim
s→∞

[
s

s + 1

s2(s + 2)(s + 3)

]
= lim

s→∞

[
a1

s

s
+

1

6

s

s2
− 1

4

s

s + 2
+

2

9

s

s + 3

]

11

or

0 = a1 + 0− 1

4
+

2

9

so a1 = 1
4
− 2

9
= 1

36

For Example 4, using Method 2, let’s choose s = 0 (note both sides of the equation must be
finite!)

lim
s→0

[
1

(s + 1)(s + 2)2

]
= lim

s→0

[
1

s + 1
+ a2

1

s + 2
− 1

(s + 2)2

]

or

1

4
= 1 +

a2

2
− 1

4

so a2 = 2(1
4

+ 1
4
− 1) = −1

For Example 5, using Method 2, let’s choose s = −1 (note that s = 0, s = −2, or s = −3 will
not work)

lim
s→−1

[
s + 1

s2(s + 2)(s + 3)

]
= lim

s→−1

[
a1

1

s
+

1

6

1

s2
− 1

4

1

s + 2
+

2

9

1

s + 3

]

or

0 = −a1 +
1

6
− 1

4

1

9

so a1 = 1
6
− 1

4
+ 1

9
= 1

36

Then for Example 4,

h(t) = e−tu(t)− e−2tu(t)− te−2tu(t)

and for Example 5

h(t) =
1

36
u(t) +

1

6
tu(t)− 1

4
e−2tu(t) +

2

9
e−3tu(t)

In summary, for repeated and distinct poles, go through the following steps:

1. Determine the form of the partial fraction expansion. There must be as many unknowns
as the highest power of s in the denominator.

2. Determine the coefficients associated with the distinct poles using the coverup method.

3. Determine the coefficient associated with the highest power of a repeated pole using the
coverup method.

12

4. Determine the remaining coefficients by

• Multiplying both sides by s and letting s →∞
• Setting s to a convenient value in both sides of the equations. Both sides must remain

finite

Example 6. Assuming

H(s) =
s2

(s + 1)2(s + 3)

determine the corresponding impulse response h(t).

First, we determine the correct form

H(s) =
s2

(s + 1)2(s + 3)
= a1

1

s + 1
+ a2

1

(s + 1)2
+ a3

1

s + 3

Second, we determine the coefficient(s) of the distinct pole(s)

a3 = lim
s→−3

(s2)

(s + 1)2
=

9

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a2 = lim
s→−1

(s2)

(s + 3)
=

1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s2

(s + 1)2(s + 3)

]
= lim

s→∞

[
a1

s

s + 1
+

1

2

s

(s + 1)2
+

9

4

s

(s + 3)

]

or

1 = a1 + 0 +
9

4

or a1 = 1− 9
4

= −5
4
.

Putting it all together, we have

h(t) = −5

4
e−tu(t) +

1

2
te−tu(t) +

9

4
e−3tu(t)

Example 7. Assume we have the transfer function

H(s) =
s + 3

s(s + 1)2(s + 2)2

find the corresponding impulse response, h(t).

13

First we determine the correct form

H(s) =
s + 3

s(s + 1)2(s + 2)2
= a1

1

s
+ a2

1

s + 1
+ a3

1

(s + 1)2
+ a4

1

s + 2
+ a5

1

(s + 2)2

Second, we determine the coefficient(s) of the distinct pole(s)

a1 = lim
s→0

s + 3

(s + 1)2(s + 2)2
=

3

(1)(4)
=

3

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a3 = lim
s→−1

s + 3

s (s + 2)2
=

2

(−1)(1)
= −2

a5 = lim
s→−2

s + 3

s(s + 1)2
=

1

(−2)(1)
= −1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s + 3

s(s + 1)2(s + 2)2

]
= lim

s→∞

[
3

4

s

s
+ a2

s

s + 1
− 2

s

(s + 1)2
+ a4

s

s + 2
− 1

2

s

(s + 2)2

]

or

0 =
3

4
+ a2 + a4

We need one more equation, so let’s set s = −3

lim
s→−3

[
s + 3

s(s + 1)2(s + 2)2

]
= lim

s→−3

[
3

8

1

s
+ a2

1

s + 1
− 2

1

(s + 1)2
+ a4

1

s + 2
− 1

2

1

(s + 2)2

]

or

0 = −1

4
− a2

1

2
− 1

2
− a4 − 1

2

This gives us the set of equations

[
1 1
1
2
−1

] [
a2

a4

]
=

[−3
4
5
4

]

with solution a2 = 1 and a4 = −7
4
. Putting it all together we have

h(t) =
3

4
u(t) + e−tu(t)− 2te−tu(t) +

−7

4
e−2tu(t)− 1

2
te−2tu(t)

14

2.6 Complex Conjugate Poles: Completing the Square

Before using partial fractions on systems with complex conjugate poles, we need to review one
property of Laplace transforms:

if x(t) ⇔ X(s), then e−atx(t) ⇔ X(s + a)

To show this, we start with what we are given:

L{x(t)} =
∫ ∞

0
x(t)e−stdt = X(s)

Then

L{e−atx(t)} =
∫ ∞

0
e−atx(t)e−stdt =

∫ ∞

0
x(t)e−(s+a)tdt = X(s + a)

The other relationships we need are the Laplace transform pairs for sines and cosines

cos(bt)u(t) ⇔ s

s2 + b2

sin(bt)u(t) ⇔ b

s2 + b2

Finally, we need to put these together, to get the Laplace transform pair:

e−at cos(bt)u(t) ⇔ s + a

(s + a)2 + b2

e−at sin(bt)u(t) ⇔ b

(s + a)2 + b2

Complex poles always result in sines and cosines. We will be trying to make terms with complex
poles look like these terms by completing the square in the denominator.

In order to get the denominators in the correct form when we have complex poles, we need to
complete the square in the denominator. That is, we need to be able to write the denominator
as

D(s) = (s + a)2 + b2

To do this, we always first find a using the fact that the coefficient of s will be 2a. Then we use
whatever is needed to construct b. A few example will hopefully make this clear.

Example 8. Let’s assume

D(s) = s2 + s + 2

and we want to write this in the correct form. First we recognize that the coefficient of s is 1,
so we know 2a = 1 or a = 1

2
. We then have

D(s) = s2 + s + 2 = (s +
1

2
)2 + b2

15

To find b we expand the right hand side of the above equations and then equate powers of s:

D(s) = s2 + s + 2 = (s +
1

2
)2 + b2 = s2 + s +

1

4
+ b2

clearly 2 = b2 + 1
4
, or b2 = 7

4
, or b =

√
7

2
. Hence we have

D(s) = s2 + s + 2 = (s +
1

2
)2 +

(√
7

2

)2

and this is the form we need.

Example 9. Let’s assume

D(s) = s2 + 3s + 5

and we want to write this in the correct form. First we recognize that the coefficient of s is 3,
so we know 2a = 3 or a = 3

2
. We then have

D(s) = s2 + 3s + 5 = (s +
3

2
)2 + b2

To find b we expand the right hand side of the above equations and then equate powers of s:

D(s) = s2 + 3s + 5 = (s +
3

2
)2 + b2 = s2 + 3s +

9

4
+ b2

clearly 5 = b2 + 9
4
, or b2 = 11

4
, or b =

√
11
2

. Hence we have

D(s) = s2 + 3s + 5 = (s +
3

2
)2 +

(√
11

2

)2

and this is the form we need.

Now that we know how to complete the square in the denominator, we are ready to look at
complex poles. We will start with two simple examples, and then explain how to deal with more
complicated examples.

Example 10. Assuming

H(s) =
1

s2 + s + 2

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
1

(s + 1
2
)2 +

(√
7

2

)2

16

This almost has the form we want, which is

e−at sin(bt)u(t) ⇔ b

(s + a)2 + b2

However, to use this form we need b in the numerator. To achieve this we will multiply and
divide by b =

√
7

2

H(s) =
1

(s + 1
2
)2 +

(√
7

2

)2

=
1
√

7
2

√
7

2

(s + 1
2
)2 +

(√
7

2

)2

or

h(t) =
2√
7
e−

1
2
t sin(

√
7

2
t)u(t)

Example 11. Assuming

H(s) =
s

s2 + 3s + 5

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
s

(s + 3
2
)2 +

(√
11
2

)2

This almost has the form we want, which is

e−at cos(bt)u(t) ⇔ (s + a)

(s + a)2 + b2

However, to use this form we need s + a in the numerator, not just s To achieve this we will
add and subtract a = 3

2
in the numerator

H(s) =
s + 3

2
− 3

2

(s + 3
2
)2 +

(√
11
2

)2

=
s + 3

2

(s + 3
2
)2 +

(√
11
2

)2 −
3
2

(s + 3
2
)2 +

(√
11
2

)2

The first term is now what we want, and will produce a term of the form

e−
3
2
t cos(

√
11

2
t)u(t)

17

The second term needs some work. It looks like a sine times a decaying exponential, but the
scaling is wrong. Again, to put this term in the correct form we will multiply and divide by

√
11
2

H(s) =
s + 3

2

(s + 1
2
)2 +

(√
11
2

)2 −
3

2

1
√

11
2

√
11
2

(s + 1
2
)2 +

(√
11
2

)2

which gives

h(t) = e−
3
2
t cos(

√
11

2
t)u(t)− 3√

11
e−

3
2
t sin(

√
11

2
t)u(t)

Note that it is possible to combine the sine and cosine terms into a single cosine with a phase
angle, but we will not pursue that here.

The examples we have done so far only contain complex roots. In general, we need to be able
to deal with systems that have both complex and real roots. Since we are dealing with real
systems in this course, all complex poles will occur in complex conjugate pairs. Hence, when we
have complex poles, we will look for quadratic factors of the general form

cs + d

s2 + +es + d

Note that there are two unknown coefficients in this term. Since we need as many unknowns
as the highest power of s in the denominator, and this term has 2 powers of s, we need two
unknowns. We are now ready to do one more example.

Example 12. Assuming

H(s) =
1

(s + 2)(s2 + s + 1)

and we want to determine the corresponding impulse response h(t). First we need to find the
correct form for the partial fractions

H(s) =
1

(s + 2)(s2 + s + 1)
= a1

1

s + 2
+

a2s + a3

s2 + s + 1

Note that we have three unknowns since the highest power of s in the denominator is 3. Since
there is an isolated pole at -2, we find coefficient a1 first using the coverup method

a1 = lim
s→−2

1

(s2 + s + 1)
=

1

(−2)2 + (−2) + 1
=

1

3

To find a2, let’s use our trick of multiplying by s and letting s →∞

lim
s→∞

[
s

1

(s + 2)(s2 + s + 1)

]
= lim

s→∞

[
1

3

s

s + 2
+

a2s
2 + a3s

s2 + s + 1

]

18

or

0 =
1

3
+ a2

so a2 = −1
3
. Now we have to find a3 and the only trick we have left is choosing a value of s. For

this particular transfer function, s = 0 is a good choice

lim
s→0

[
1

(s + 2)(s2 + s + 1)

]
= lim

s→0

[
1

3

1

s + 2
+

a2s + a3

s2 + s + 1

]

or

1

2
=

1

6
+ a3

or a3 = 1
3
. So far we have

H(s) =
1

3

1

s + 2
+

−1
3
s + 1

3

s2 + s + 1

The first term is easy, now we need to work on the second term. First we complete the square
in the denominator

s2 + s + 1 = (s +
1

2
)2 +

(√
3

2

)2

so we have

H(s) =
1

3

1

s + 2
+

−1
3
s + 1

3

(s + 1
2
)2 +

(√
3

2

)2

The next thing to do is to add and subtract 1
2
, so the numerator has the correct form so we have

H(s) =
1

3

1

s + 2
+
−1

3
(s + 1

2
− 1

2
) + 1

3

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
+
−1

3
(s + 1

2
) + (1

6
+ 1

3
)

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
+

−1
3
(s + 1

2
) + 1

2

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1

2

1

(s + 1
2
)2 +

(√
3

2

)2

Finally, we have to scale the final term to put it into the correct form

H(s) =
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1

2

1
√

3
2

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1√
3

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

19

So we finally have

h(t) =
1

3
e−2tu(t)− 1

3
e−

1
2
t cos(

√
3

2
t)u(t) +

1√
3
e−

1
2
t sin(

√
3

2
t)u(t)

2.7 Common Denominator/Cross Multiplying

As a last method, we’ll look at a method of doing partial fractions based on using a common de-
nominator. This method is particularly useful for simple problems like finding the step response
of a second order system. However, for many other types of problems it is not very useful, since
it generates a system of equations that must be solved, much like substituting values of s will
do.
Example 13 Let’s assume we have the second order system

H(s) =
b

s2 + cs + d

and we want to find the step response of this system,

Y (s) = H(s)
1

s

=
b

s(s2 + bs + c)
= a1

1

s
+

a2s + a3

s2 + bs + c

=
b

s(s2 + bs + c)
=

a1(s
2 + bs + c) + s(a2s + a3)

s(s2 + bs + c)

=
b

s(s2 + bs + c)
=

(a1c)s
0 + (a1b + a3)s

1 + (a1 + a2)s
2

s(s2 + bs + c)

Since we have made the denominator common for both sides, we just need to equate powers of
s in the numerator:

a1c = b

a1b + a3 = 0

a1 + a2 = 0

Since c and b are known, we can easily solve for a1 in the first equation, then a2 and a3 in the
remaining equations.

Example 14. Find the step response of

H(s) =
1

s2 + 2s + 2

using the common denominator method. Y (s) is given by

Y (s) =
1

s

1

s2 + 2s + 2
= a1

1

s
+

a2s + a3

s2 + 2s + 2

20

If we put everything over a common denominator we will have the equation

1 = a1(s
2 + 2s + 2) + s(a2s + a3)

= (2a1)s
0 + (2a1 + a3)s

1 + (a1 + a2)s
2

Equating powers of s we get a1 = 1
2
, then a3 = −1 and a2 = −1

2
. The we have

Y (s) =
1

2

1

s
+

−1
2

s− 1

s2 + 2s + 2

=
1

2

1

s
− 1

2

s + 2

s2 + 2s + 2

=
1

2

1

s
− 1

2

(s + 1)

(s + 1)2 + 1
− 1

2

1

(s + 1)2 + 1

In the time-domain we have then

y(t) =
1

2
u(t)− 1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

Example 15. Find the step response of

H(s) =
3

2s2 + 3s + 3

using the common denominator method. Partial fractions will only work if the denominator is
monic, which means the leading coefficient must be a 1. Hence we rewrite H(s) as

H(s) =
3
2

s2 + 3
2
s + 3

2

Y (s) is then given by

Y (s) =
1

s

3
2

s2 + 3
2
s + 3

2

= a1
1

s
+

a2s + a3

s2 + 3
2
s + 3

2

If we put everything over a common denominator we will have the equation

3

2
= a1(s

2 +
3

2
s +

3

2
) + s(a2s + a3)

= (
3

2
a1)s

0 + (
3

2
a1 + a3)s

1 + (a1 + a2)s
2

Equating powers of s we get a1 = 1, then a2 = −1 and a3 = −3
2
. The we have

Y (s) =
1

s
+

−s− 3
2

s2 + 3
2
s + 3

2

=
1

s
− s + 3

4
+ 3

4

s2 + 3
2
s + 3

2

=
1

s
− (s + 3

4
)

(s + 3
4
)2 +

(√
15
16

)2 −
3

4

√
16

15

√
15
16

(s + 3
4
)2 +

(√
15
16

)

In the time-domain we have then

y(t) = u(t)− e−3t/4 cos(

√
15

16
t)u(t)− 3√

15
e−3t/4 sin(

√
15

16
t)u(t)

21

2.8 Complex Conjugate Poles-Again

It is very important to understand the basic structure of complex conjugate poles. For a system
with complex poles at −a±bj, the characteristic equation (denominator of the transfer function)
will be

D(s) = [s− (−a + jb)][s− (−a− jb)]

= [s + (a− jb)][s + (a + jb)]

= s2 + [(a− jb) + (a + jb)]s + (a− jb)(a + jb)

= s2 + 2as + a2 + b2

= (s + a)2 + b2

We know that this form leads to terms of the form e−at cos(bt)u(t) and e−at sin(bt)u(t). Hence
we have the general relationship that complex poles at −a ± jb lead to time domain functions
that

• decay like e−at (the real part determines the decay rate)

• oscillate like cos(bt) or sin(bt) (the imaginary part determines the oscillation frequency)

These relationships, relating the imaginary and real parts of the poles with corresponding time
domain functions, are very important to remember.

22

3 Final Value Theorem and the Static Gain of a System

The final value theorem for Laplace transforms can generally be stated as follows:
If Y (s) has all of its poles in the open left half plane, with the possible exception of a single pole
at the origin, then

lim
t→∞ y(t) = lim

s→0
sY (s)

provided the limits exists.

Example 1. For y(t) = e−atu(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at = 0

lim
s→0

sY (s) = lim
s→0

s
1

s + a
= lim

s→0

s

s + a
= 0

Example 2. For y(t) = sin(bt)u(t) we have

lim
t→∞ y(t) = lim

t→∞ sin(bt)

lim
s→0

sY (s) = lim
s→0

s
b

s2 + b2
= lim

s→0

sb

s2 + b2
= 0

Clearly limt→∞ y(t) 6= lims sY (s). Why? Because the final value theorem is not valid since Y (s)
has two poles on the jω axis.

Example 3. For y(t) = u(t) we have

lim
t→∞ y(t) = lim

t→∞u(t) = 1

lim
s→0

sY (s) = lim
s→0

s
1

s
= lim

s→0

s

s
= 1

Example 4. For y(t) = e−at cos(bt)u(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at cos(bt)u(t) = 0

lim
s→0

sY (s) = lim
s→0

s
(s + a)

(s + a)2 + b2
= lim

s→0

s(s + a)

(s + a)2 + b2
= 0

One of the common ways in which we use the Final Value Theorem is to compute the static
gain of a system. The response of a transfer function G(s) to a step input of amplitude A,

Y (s) = G(s)
A

s

If we want the final value of y(t) then we can use the Final Value Theorem

lim
t→∞ y(t) = lim

s→0
sY (s)

23

= lims→0sG(s)
A

s
= AG(0)

= AKstatic

provided G(0) exists. G(0) is referred to as the gain or static gain of the system. This is a very
convenient way of determining the static gain of a system. It is important to remember that
the steady state value of a system is the static gain of a system multiplied by the amplitude of
the step input.

Example 5. For the transfer function

G(s) =
s + 2

s2 + 3s + 1

the static gain is 2, and if the step input has an amplitude of 0.1, the final value will be 0.2.

Example 6. For the transfer function

G(s) =
s2 + 1

s3 + 2s2 + 3s + 4

the static gain is 1
4
, and if the step input has an amplitude of 3, the final value will be 0.75.

24

4 Step Response, Ramp Response, and Steady State Er-

rors

In control systems, we are often most interested in the response of a system to the following
types of inputs:

• a step

• a ramp

• a sinusoid

Although in reality control systems have to respond to a large number of different inputs, these
are usually good models for the range of input signals a control system is likely to encounter.

4.1 Step Response and Steady State Error

The step response of a system is the response of the system to a step input. In the time domain,
we compute the step response as

y(t) = h(t) ? Au(t)

where A is the amplitude of the step and u(t) is the unit step function and ? is the convolution
operator. In the s domain, we compute the step response as

Y (s) = H(s)
A

s
y(t) = L−1{Y (s)}

The steady state error, ess, is the difference between the input and the resulting response as
t →∞. For a step input of amplitude A we have

ess = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

Note that the steady state error can be both positive (the final value of the output is not as large
as the input) or negative (the final value of the output is larger than the input).
Example 1. Consider the system with transfer function H(s) = 4

s2+2s+5
. Determine step re-

sponse and the steady state error for this system.

First we find the step response,

Y (s) =
4

s2 + 2s + 5

A

s
= a1

1

s
+

a2s + a3

(s + 1)2 + 22

= A

[
4

5

1

s
−

4
5
s + 8

5

(s + 1)2 + 22

]

= A

[
4

5

1

s
−

4
5
(s + 1)

(s + 1)2 + 22
− 2

5

2

(s + 1)2 + 22

]

25

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = 0.2

Figure 1: The unit step response and position error for the system in Example 1. This system
has a positive position error.

or

y(t) = A
[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]

Then the steady state error is

ess = A− lim
t→∞A

[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]

= A− 4A

5

=
A

5

The step response and steady state error of this system are shown in Figure 1 for a a unit step
(A = 1)input. Note that the positive steady state error indicates the final value of the output
is smaller than the final value of the input.

Example 2. Consider the system with transfer function H(s) = 1
(s+1)(s+3)

. Determine the step
response and steady state error for this system.
First we find the step response,

Y (s) =
5

(s + 1)(s + 3)

A

s
= a1

1

s
+ a2

1

s + 1
+ a3

1

s + 3

=
5A

3

1

s
− 5A

2

1

s + 1
+

5A

6

1

s + 3

26

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = −0.667

Figure 2: The unit step response and position error for the system in Example 2. This system
has a negative position error.

or

y(t) = A
[
5

3
u(t)− 5

2
e−tu(t) +

5

6
e−3tu(t)

]

Then the steady state error is

ep = A− lim
t→∞A

[
5

3
u(t)− 5

2
e−tu(t) +

5

6
e−3tu(t)

]

= A− 5A

3

=
−2A

3

The step response and steady state error of this system are shown in Figure 2 for a a unit step
(A = 1)input. Note that the negative steady state error indicates the final value of the output
is larger than the final value of the input.

Now, as much as I’m sure you like completing the square and doing partial fractions, there is
an easier way to do this. We already have learned that if Y (s) has all of its poles in the open
left half plane (with the possible exception of a single pole at the origin), we can use the final
value theorem to find the steady state value of the step response. Specifically,

lim
t→∞ y(t) = lim

s→0
sY (s)

27

= lim
s→0

s
[
H(s)

A

s

]

= lim
s→0

AH(s)

= AH(0)

and then, for stable H(s) we can compute the steady state error as

ess = A− AH(0)

where A is the amplitude of the step input. For a unit step response A = 1.

Example 3. From Example 1, we compute

ess = A− AH(0)

= A− A
4

5

=
A

5

Example 4. From Example 2, we compute

ess = A− AH(0)

= A− A
5

3

=
−2A

3

There is yet another way to compute the steady state error, which is useful to know. Let’s
assume we write the transfer function as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

To compute the steady state error for a step input we need to compute

ess = lim
s→0

A[1−H(s)]

Let’s write 1−H(s) and put it all over a common denominator. Then we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s + d0)− (nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

=
... + (d2 − n2)s

2 + (d1 − n1)s + (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

Then

ess = lim
s→0

A[1−H(s)]

= A
d0 − n0

d0

28

Example 5. From Example 1, we have n0 = 4 and d0 = 5, so the steady state error for a step

input is ess = A5−4
5

= A
5
.

Example 6. From Example 2, we have n0 = 5, d0 = 3, so the steady state error for a step

input is ess = A3−5
3

= −2A
3

.

4.2 Ramp Response and Steady State Error

The ramp response of a system is the response of the system to a ramp input. In the time
domain, we compute the ramp response as

y(t) = h(t) ? Atu(t)

where A is the amplitude of the step and u(t) is the unit step function. In the s domain, we
compute the step response as

Y (s) = H(s)
A

s2

y(t) = L−1{Y (s)}
The steady state error, ess, is the difference between the input ramp and the resulting response
as t →∞,

ess = lim
t→∞ [Atu(t)− y(t)]

It should be clear that unless y(t) has a term like Atu(t), the steady state error will be infinite.
Note that the steady state error can be both positive (the final value of the output is not as large
as the input) or negative (the final value of the output is larger than the input).

Example 7. Consider the system with transfer function H(s) = 1
s+1

. Determine the ramp
response and steady state error for this system.

First we find the ramp response

Y (s) =
1

s + 1

A

s2
= a1

1

s
+ a2

1

s2
+ a3

1

s + 1

= A
[
−1

s
+

1

s2
+

1

s + 1

]

or

y(t) = A
[
−u(t) + tu(t) + e−tu(t)

]

Then the steady state error is

ess = Atu(t)− lim
t→∞A

[
−u(t) + tu(t) + e−tu(t)

]

= At− At + A

= A

29

Example 8. Consider the system with transfer function H(s) = s+2
s2+2s+2

. Determine the ramp
response and steady state error for this system.

First we find the ramp response

Y (s) =
s + 2

s2 + 2s + 2

A

s2
= a1

1

s
+ a2

1

s2
+

a3s + a4

s2 + 2s + 2

= A

[
−1

2

1

s
+

1

s2
+

1

2

s

(s + 1)2 + 1

]

= A

[
−1

2

1

s
+

1

s2
+

1

2

s + 1

(s + 1)2 + 1
− 1

2

1

(s + 1)2 + 1

]

or

y(t) = A
[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

Then the steady state error is

ess = Atu(t)− lim
t→∞A

[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

= At− At +
1

2
A

=
A

2

The ramp response and steady state error for this system are shown in Figure 3 for a a unit
ramp input. Note that the steady state error is positive, indicating the output of the system is
smaller than the input in steady state.
We can try and use the Final Value Theorem again, but it becomes a bit more complicated. We
want to find

ess = lim
t→∞ [Atu(t)− y(t)]

= lim
s→0

s
[
A

s2
− A

s2
H(s)

]

= lim
s→0

A

s
[1−H(s)]

Let’s assume again we can write the transfer function as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

If we compute 1−H(s) and put things over a common denominator, we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s + d0)− (nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

=
... + (d2 − n2)s

2 + (d1 − n1)s + (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

30

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

D
is

pl
ac

em
en

t

Input
Output

steady state error = 0.5

Figure 3: The unit ramp response and steady state error for the system in Example 8. Note
that the steady state error is positive in this case, since the steady state value of the output is
smaller than the steady state value of the input.

31

and

1

s
[1−H(s)] =

... + (d2 − n2)s
+(d1 − n1) + (d0 − n0)

1
s

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

Now, in order to have ess be finite, we must get a finite value as s → 0 in this expression. The
value of the denominator will be d0 as s → 0, so the denominator will be OK. All of the terms
in the numerator will be zero except the last two: (d1− n1) + (d0− n0)

1
s

In order to get a finite
value from these terms, we must have n0 = d0, that is, constant terms in the numerator and
denominator must be the same. This also means that the system must have a zero steady state
error for a step input. Important!! If the system does not have a zero steady state error for a
step input, the steady state error for a ramp input will be infinite! Conversely, if a system has
finite steady state error for a ramp input, the steady state error for a step input must be zero!
If n0 = d0, then we have

ess = lim
s→0

A

s
[1−H(s)] = A

d1 − n1

d0

Example 9. For the system in Example 7, H(s) = 1
s+1

. Here n0 = d0 = 1, so the system
has zero steady state error for a step input, and n1 = 0, d1 = 1. Hence for a ramp input
ess = Ad1−n1

d0
= A.

Example 10. For the system in Example 8, H(s) = s+2
s2+2s+2

. Here n0 = d0 = 2, so the system
has zero steady state error for a step input, and n1 = 1, d1 = 2. Hence for a ramp input
ess = Ad1−n1

d0
= A

2
.

4.3 Summary

Assume we write the transfer function of a system as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

The step response of a system is the response of the system to a step input. The steady state
error, ess, for a step input is the difference between the input and the output of the system in
steady state. We can compute the steady state error for a step input in a variety of ways:

ess = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

= A(1−H(0))

= A
d0 − n0

d0

The ramp response of a system is the response of the system to a ramp input. The steady state
error, ess, for a ramp input is the difference between the input and output of the system in
steady state. A system has infinite steady state error for a ramp input unless the steady state

32

error for a step input is zero. We can compute the steady state error for a ramp input in a
variety of ways:

ess = lim
t→∞ [At− y(t)]

= A
d1 − n1

d0

33

5 Response of a Ideal Second Order System

This is an important example, which you have probably seen before. Let’s assume we have an
ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kstatic ωn

2

s2 + 2ζωns + ω2
n

where ζ is the damping ratio, ωn is the natural frequency, and Kstatic is the static gain. The
poles of the transfer function are the roots of the denominator, which are given by the quadratic
formula

roots =
−2ζωn ±

√
(2ζωn)2 − 4ω2

n

2

= −ζωn ± ωn

√
ζ2 − 1

= −ζωn ± jωn

√
1− ζ2

= −ζωn ± jωd

= −σ ± jωd

= −1/τ ± jωd

where we have used the damped frequency ωd = ωn

√
1− ζ2 and σ = 1

τ
= ζωn. As we start to

talk about systems with more than two poles, it is easier to remember to use the form of the
poles −σ ± ωd or −1/τ ± ωd.

5.1 Step Response of an Ideal Second Order System

To find the step response,

Y (s) = H(s)U(s) =
Kstatic ω2

n

s2 + 2ζωns + ω2
n

1

s

We then look for a partial fraction expansion in the form

Y (s) =
Kstatic ω2

n

s2 + 2ζωns + ω2
n

1

s
= a1

1

s
+

a2s + a3

s2 + 2ζωns + ω2
n

From this, we can determine that a1 = Kstatic, a2 = −Kstatic, and a3 = −2ζωnKstatic. Hence we
have

Y (s) = Kstatic
1

s
−Kstatic

s + 2ζωn

s2 + 2ζωns + ω2
n

Completing the square in the denominator we have

Y (s) = Kstatic
1

s
−Kstatic

s + 2ζωn

(s + ζωn)2 + ω2
d

34

or

Y (s) = Kstatic
1

s
−Kstatic

s + ζωn

(s + ζωn)2 + ω2
d

−Kstatic
ζωn

(s + ζωn)2 + ω2
d

= Kstatic
1

s
−Kstatic

s + ζωn

(s + ζωn)2 + ω2
d

−Kstatic
ζωn

ωd

ωd

(s + ζωn)2 + ω2
d

or in the time domain

y(t) = Kstatic

[
1− e−ζωnt cos(ωdt)− ζωn

ωd

e−ζωnt sin(ωdt)

]
u(t)

We would now like to write the sine and cosine in terms of a sine and a phase angle. To do this,
we use the identity

r sin(ωd + θ) = r cos(ωd) sin(θ) + r sin(ωd) cos(θ)

Hence we have

r sin(θ) = 1

r cos(θ) =
ζωn

ωd

=
ζ√

1− ζ2

Hence

θ = tan−1

(√
1− ζ2

ζ

)

r =
1√

1− ζ2

Note that

cos(θ) =
ζ√

1− ζ2

1

r
=

ζ√
1− ζ2

√
1− ζ2

or θ = cos−1(ζ). Finally we have

y(t) = Kstatic

[
1− 1√

1− ζ2
e−ζωnt sin(ωdt + θ)

]
u(t)

5.2 Time to Peak, Tp

From our solution of the response of the ideal second order system to a unit step, we can compute
the time to peak by taking the derivative of y(t) and setting it equal to zero. This will give us
the maximum value of y(t) and the time that this occurs at is called the time to peak, Tp.

dy(t)

dt
= − Kstatic√

1− ζ2

[
−ζωne

−ζωnt sin(ωdt + θ) + ωde
−ζωnt cos(ωdt + θ)

]
= 0

35

or

ζωn sin(ωdt + θ) = ωd cos(ωdt + θ)

tan(ωdt + θ) =

√
1− ζ2

ζ

θ + ωdt = tan−1

(√
1− ζ2

ζ

)

but we already have θ = tan−1

(√
1−ζ2

ζ

)
, hence ωdt must be equal to one period of the tangent,

which is π. Hence

Tp =
π

ωd

Remember that ωd is equal to the imaginary part of the complex poles.

5.3 Percent Overshoot, PO

Evaluating y(t) at the peak time Tp we get the maximum value of y(t),

y(Tp) = Kstatic

[
1− 1√

1− ζ2
e−ζωnTp sin(ωdTp + θ)

]

= Kstatic

[
1− 1√

1− ζ2
e−ζωnπ/ωd sin(ωd

π

ωd

+ θ)

]

= Kstatic

[
1 +

1√
1− ζ2

e−ζπ/
√

1−ζ2
sin(θ)

]

since sin(θ + π) = − sin(θ). Then sin(θ) =
√

1− ζ2, hence

y(t) = Kstatic

[
1 + e

− ζπ√
1−ζ2

]

The percent overshoot is defined as

Percent Overshoot = P.O. =
y(Tp)− y(∞)

y(∞)
× 100%

For our second order system we have y(∞) = Kstatic, so

P.O. =
Kstatic

[
1 + e

− ζπ√
1−ζ2

]
−Kstatic

Kstatic

× 100%

or

P.O. = e
− ζπ√

1−ζ2 × 100%

36

5.4 Settling Time, Ts

The settling time is defined as the time it takes for the output of a system with a step input
to stay within a given percentage of its final value. In this course, we use the 2% settling time
criteria, which is generally four time constants. For any exponential decay, the general form is
written as e−t/τ , where τ is the time constant. For the ideal second order system response, we
have τ = 1/ζωn or σ = ζωn. Hence, for and ideal second order system, we estimate the settling
time as

Ts = 4τ =
4

σ
=

4

ζωn

For systems other than second order systems we will want to talk about the settling time, hence
the use of the forms

Ts = 4τ =
4

σ

are often more appropriate to remember.

Example 1. Consider the system with transfer function given by

H(s) =
9

s2 + βs + 9

determine the range of β so that Ts ≤ 5 seconds and Tp ≤ 1.2 seconds.

For the transfer function, we see that ωn = 3 and 2ζωn = β, so ζ = β/(2ωn) = β/6. For the
settling time constraint we have

Ts =
4

ζωn

≤ 5

4
β
6
3

≤ 5

8

5
≤ β

so β ≥ 1.60. For the time to peak constraint, we have

Tp =
π

ωd

≤ 1.2

π

ωn

√
1− ζ2

≤ 1.2

π

1.2ωn

≤
√

1− ζ2

(
π

1.2ωn

)2

≤ 1− ζ2

ζ2 ≤ 1−
(

π

1.2ωn

)2

ζ ≤
√

1−
(

π

1.2ωn

)2

β ≤ 6

√
1−

(
π

1.2ωn

)2

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 4: Step response for the system H(s) = 9
s2+2.265s+9

. The settling time should be less than
5 seconds, the time to peak should be less than 1.2 seconds, and the percent overshoot should
be 27.8%.

or β ≤ 2.93. To meet both constraints we need 1.60 ≤ β ≤ 2.93. Let’s choose the average,
so β = 2.265. Then ζ = 0.3775 and the percent overshoot is 27.8%. The step response of this
system is shown in Figure 4.

Example 2. Consider the system with transfer function given by

H(s) =
K

s2 + 2s + K

determine the range of K so that PO ≤ 20%. Is there any value of K so that Ts ≤ 2 seconds?

For the transfer function, we see that ωn =
√

K and 2ζωn = 2, so ζωn = 1 and ζ = 1√
K

. For the

percent overshoot we have b = 20/100 = 0.2 and

e
− ζπ√

1−ζ2 ≤ b

− ζπ√
1− ζ2

≤ ln(b)

− π√
K

1√
1− 1

K

≤ ln(b)

− π√
K − 1

≤ ln(b)

38

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 5: Step response for the system H(s) = K
s2+2s+K

. The percent overshoot should be less
than or equal to 20% and the settling time should be 4 seconds.

− π

ln(b)
≤

√
K − 1

(
π

ln(b)

)2

≤ K − 1

1 +

(
π

ln(b)

)2

≤ K

Hence we need K ≥ 4.8 to meet the percent overshoot requirement. Now we try to meet the
settling time requirment

Ts =
4

ζωn

≤ 2

but 4
ζωn

= 4
1

= 4. Thus, we cannot meet the settling time constraint for any value of K. The
step response of this system for K = 2.8 is shown in Figure 5.

5.5 Constraint Regions in the s-Plane

Sometimes, instead of looking at a transfer function and trying to determine the percent over-
shoot, settling time, or time to peak, we can take the opposite approach and try to determine

39

the region in the s-plane the poles of the system should be located in to achieve a given criteria.
Each one of the three criteria will determine a region of space in the s-plane.

Time to Peak (Tp) Let’s assume we have a maximum time to peak given, Tmax
p , and we want

to know where to find all of the poles that will meet this constraint. We have

Tp =
π

ωd

≤ Tmax
p

we can rearrange this as

π

Tmax
p

≤ ωd

Since we can write the complex poles as −σ ± jωd, this means that the imaginary part of the
poles must be greater than π

T max
p

.

Example 3. Determine all acceptable pole location so that the time to peak will be less than
2 seconds. We have Tmax

p = 2, so ωd ≥ π
2

= 1.57. The acceptable pole locations are shown in
the shaded region of Figure 6.

Figure 6: Acceptable pole locations for Tp ≤ 2 seconds are shown in the shaded region.

40

Percent Overshoot (P.O.) Let’s assume we have a maximum percent overshoot given, POmax,
and we want to know where to find all of the poles that will meet this constraint. We have

P.O. = e
− ζπ√

1−ζ2 × 100% ≤ POmax

or

e
− ζπ√

1−ζ2 ≤ POmax

100
= b

where we have defined the parameter b = POmax/100 for notational convenience. We need to
first solve the above expression for ζ.

− ζπ√
1− ζ2

≤ ln(b)

ζ√
1− ζ2

≥ − ln(b)

π

ζ2

1− ζ2
≥

(− ln(b)

π

)2

ζ2 ≥
(− ln(b)

π

)2

− ζ2

(− ln(b)

π

)2

ζ2

1 +

(− ln(b)

π

)2

 ≥

(− ln(b)

π

)2

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2

Now we use the relationship

θ = cos−1 (ζ)

In summary, we have

θ ≤ cos−1 (ζ) , ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2
, b =

POmax

100

This angle θ is measured from the negative real axis. Hence an angle of 90 degrees indicates
ζ = 0 and there is no damping (the poles are on the jω axis), while an angle of 0 degrees means
the system has a damping ratio of 1, and the poles are purely real.

41

Example 4. Determine all acceptable pole locations so that the percent overshoot will be less
than 10%. We have b = 0.1, so ζ ≥ 0.59 and θ ≤ 53.8o The acceptable pole locations are shown
in the shaded region of Figure 7.

Figure 7: Acceptable pole locations for Percent Overshoot less than or equal to 10%. The
acceptable pole locations are shown in the shaded region.

42

Example 5. Determine all acceptable pole locations so that the percent overshoot will be less
than 20% and the time to peak will be less than 3 seconds. We have b = 0.2, so ζ ≥ 0.46 and
θ ≤ 62.9o. We also have Tmax

p = 3, so ωd ≥ π
3

= 1.04 The acceptable pole locations for each
constraint are shown in Figure 8. The overlapping regions are the acceptable pole locations to
meet both the percent overshoot and time to peak constraints.

Figure 8: Acceptable pole locations for Percent Overshoot less than or equal to 20% and time
to peak less than or equal to 3 seconds. The acceptable pole locations for each constraint are
shown in the shaded regions. The overlapping regions are those pole locations that will meet
both constraints.

43

Settling Time (Ts) Let’s assume we have a maximum settling time Tmax
s , and we want to

know where to find all of the poles that will meet this constraint. We have

Ts =
4

σ
≤ Tmax

s

or

4

Tmax
s

≤ σ

Since we can write the complex poles as −σ ± jωd, this means that the real part of the poles
must be greater (in magnitude) than 4

T max
s

. In other words, the poles must have real parts less

than − 4
T max

s

Example 6. Determine all acceptable pole locations so that the settling time will be less than
3 seconds. We have Tmax

s = 3, so σ ≥ 4
T max

s
= 4

3
= 1.333. The acceptable pole locations are

shown in Figure 9.

Figure 9: Acceptable pole locations for settling time less than or equal to 3 seconds. The
acceptable pole locations are shown in the shaded region.

44

Example 7. Determine all acceptable pole locations so that the settling time will be less than
1 second and the time to peak will be less than or equal to 0.5 seconds. We have Tmax

s = 1,
so σ ≥ 4

T max
s

= 4
1

= 4. We also have Tmax
p = 0.5, so ωd ≥ π

T max
p

= π
0.5

= 6.28. The acceptable

pole locations for each constraint are shown in Figure 10. The overlapping regions (upper left
corner, lower left corner) are the acceptable pole locations to meet both the settling time and
time to peak constraints.

Figure 10: Acceptable pole locations for settling time less than or equal to 1 second and time to
peak less than 0.5 seconds. The acceptable pole locations for each constraint are shown in the
shaded regions. The overlapping regions are those pole locations that will meet both constraints.

45

Example 8. Determine all acceptable pole locations so that the settling time will be less than
5 seconds, the time to peak will be less than or equal to 2 seconds, and the percent overshoot
will be less than 5%. We have Tmax

s = 5, so σ ≥ 4
T max

s
= 4

5
= 0.8. We also have Tmax

p = 2, so
ωd ≥ π

T max
p

= π
2

= 1.57. Finally, b = 0.05, ζ ≥ 0.69 or θ < 46.4o. The acceptable pole locations

for each constraint are shown in Figure 11. The overlapping regions (two triangular wedges) are
the acceptable pole locations to meet all three constraints.

Figure 11: Acceptable pole locations for settling time less than 5 seconds, time to peak less than
or equal to 2 seconds, and the percent overshoot less than 5%. The acceptable pole locations
for each constraint are shown in the shaded regions. The overlapping regions (two triangular
wedges) are those pole locations that will meet all three constraints.

5.6 Summary

For an ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kstatic ωn

2

s2 + 2ζωns + ω2
n

the poles are located at −ζωn± jωd, which is commonly written as either −σ± jωd or − 1
τ
± jωd.

We can compute the percent overshoot (PO), the settling time (Ts), and the time to peak (Tp)

PO = e
− ζπ√

1−ζ2 × 100%

46

Ts =
4

ζωn

= 4τ =
4

σ

Tp =
π

ωd

It is important to remember that these relationships are only valid for ideal second order sys-
tems!

What is generally more useful to us is to use these relationships to determine acceptable pole
locations to meet the various design criteria. If the maximum desired settling time is Tmax

s , then
all poles must have real parts less than −4/Tmax

s . If the maximum desired time to peak is Tmax
p ,

then the imaginary parts of the dominant poles must have imaginary parts larger than π/Tmax
p ,

or less than −π/Tmax
p (since poles come in complex conjugate pairs). If the maximum percent

overshoot is POmax, then the poles must lie in a wedge determined by θ = cos−1 (ζ) where θ is
measured from the negative real axis and

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2
, b =

POmax

100

Each of these constraints can be used to define a region of acceptable pole locations for an ideal
second order system. However, they are often used as a guide (or starting point) for higher
order systems, and systems with zeros.

47

6 Characteristic Polynomial, Modes, and Stability

In this section, we first introduce the concepts of the characteristic polynomial, characteristic
equation, and characteristic modes. You’ll obviously note the word characteristic is used quite
a lot here. Then, we utilize these concepts to define stability of our systems.

6.1 Characteristic Polynomial, Equation, and Modes

Consider a transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. D(s) is called the character-
istic polynomial of the system, and the equation D(s) = 0 is called the characteristic equation.
The time functions associated with the roots of the characteristic equation (the poles of the
system) are called the characteristic modes. To determine the characteristic modes, it is often
easiest to think of doing partial fraction expansion and looking at the resulting time functions.
Some examples will probably help.

Example 1. Consider the transfer function

H(s) =
s + 2

s2(s + 1)(s + 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s + 1
+ a4

1

s + 3

Then we have:

Characteristic Polynomial: s2(s + 1)(s + 3)
Characteristic Equation: s2(s + 1)(s + 3) = 0
Characteristic Modes: u(t), tu(t), e−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2tu(t) + a3e
−tu(t) + a4e

−3tu(t)

Example 2. Consider the transfer function

H(s) =
s− 3

s(s + 1)2(s + 3)
= a1

1

s
+ a2

1

s + 1
+ a3

1

(s + 1)2
+ a4

1

s + 3

Then we have:

Characteristic Polynomial: s(s + 1)2(s + 3)
Characteristic Equation: s(s + 1)2(s + 3) = 0
Characteristic Modes: u(t), e−tu(t), te−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2e
−tu(t) + a3te

−tu(t) + a4e
−3tu(t)

48

Example 3. Consider the transfer function

H(s) =
1

s2 + s + 1
=

1

(s + 1
2
)2 +

(√
3

2

)2

= a1

s + 1
2

(s + 1
2
)2 +

(√
3

2

)2 + a2

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

Then we have:

Characteristic Polynomial: s2 + s + 1
Characteristic Equation: s2 + s + 1 = 0

Characteristic Modes: e−t/2 cos(
√

3
2

t)u(t), e−t/2 sin(
√

3
2

t)u(t)

The impulse response is going to be a linear combination of characteristic modes:

h(t) = a1e
−t/2 cos(

√
3

2
t)u(t) + a2e

−t/2 sin(

√
3

2
t)u(t)

6.2 Characteristic Mode Reminders

There are are few things to keep in mind when finding characteristic modes

• There are as many characteristic modes as there are poles of the transfer function. Each
characteristic mode must be different from the others.

• For any complex poles−σ±jωd, the characteristic mode will be of the form e−σt cos(ωdt)u(t),
and e−σt sin(ωdt)u(t).

• Assume pole pi corresponds to characteristic mode φi(t). If there are two poles at pi, the
characteristic modes associated with pole pi will be φi(t) and tφi(t). If there are three
poles at pi, the characteristic modes associated with pi will be φi(t), tφi(t), and t2φi(t).
If pole pi is repeated n times, the characteristic modes associated with pole pi will be
φi(t), tφi(t), t2φi(t), ... tn−1φi(t)

• The impulse response is a linear combination of the characteristic modes of a system.

Example 4. If a transfer function has poles at −1,−1,−2 ± 3j,−5 ± 2j, the characteris-
tic modes are given by e−tu(t), te−tu(t), e−2t cos(3t)u(t), e−2t sin(3t)u(t), e−5t cos(2t)u(t), and
e−5t sin(2t)u(t).

Example 5. If a transfer function has poles at −2,−2,−2,−3± 2j, −3± 2j, the characteristic
modes are at e−2tu(t), te−2tu(t), t2e−2tu(t), e−3t cos(2t)u(t), e−3t sin(2t)u(t), te−3t cos(2t)u(t),
and te−3t sin(2t)u(t).

49

6.3 Stability

A system is defined to be stable if all of its characteristic modes go to zero as t →∞. A system
is defined to be marginally stable if all of its characteristic modes are bounded as t → ∞. A
system is unstable if any of its characteristic modes is unbounded as t → ∞. There are other
definitions of stability, each with their own purpose. For the systems we will be studying in this
course, generally linear time invariant systems, these are the most appropriate. Note that the
stability of a system is independent of the input.

In determining stability, the following mathematical truths should be remembered

lim
t→∞ tne−at = 0 for all positive a and n

lim
t→∞ e−at cos(ωdt + φ) = 0 for all positive a

lim
t→∞ e−at sin(ωdt + φ) = 0 for all positive a

u(t) is bounded

cos(ωdt + φ) is bounded

sin(ωdt + φ) is bounded

Example 6. Assume a system has poles at −1, 0,−2. Is the system stable?

The characteristic modes of the system are e−tu(t), u(t), and e−2tu(t). Both e−tu(t) and e−2tu(t)
go to zero as t →∞. u(t) does not go to zero, but it is bounded. Hence the system is marginally
stable.

Example 7. Assume a system has poles at −1, 1,−2± 3j. Is the system stable?

The characteristic modes of the system are e−tu(t), etu(t), e−2t cos(3t)u(t), and e−2t sin(3t). All
of these modes go to zero as t goes to infinity, except the mode etu(t). This mode is unbounded
as t →∞. Hence the system is unstable.

Example 8. Assume a system has poles at −1,−1,−2± j,−2± j. Is the system stable?

The characteristic modes of the system are e−tu(t), te−tu(t), e−2t cos(t)u(t), e−2t sin(t)u(t),
te−2t cos(t)u(t), and te−2t sin(t)u(t). All of the characteristic modes go to zero as t goes to
infinity, so the system is stable.

6.4 Settling Time and Dominant Poles

For an ideal second order system, we have already shown that the (2%) settling time is given by

Ts =
1

ζωn

We need to be able to deal with systems with more than two poles. To do this, we first make
the following observations:

50

• We normally write decaying exponentials in the form e−t/τ , where τ is the time constant.
Using the 2 % settling time, we set the settling time equal to four time constants, Ts = 4τ .

• If a system has a real pole at −σ, the corresponding mode is e−σtu(t). Hence the time
constant τ is equal to 1

σ
. The settling time for this pole is then Ts = 4τ = 4 1

σ
.

• If a system has complex conjugate poles at −σ ± jωd, the corresponding modes are
e−σt cos(ωdt)u(t) and e−σt sin(ωdt)u(t). Although these modes oscillate, the settling time
depends on the time constants, which again leads to τ = 1

σ
, and the settling time for this

type of mode is given by Ts = 4 1
σ

Hence, to determine the settling time associated with the ith pole of the system, pi, we compute

T i
s = 4

1

Re{−pi} =
4

σ

where we have written the real part of the pole, Re{−pi}, is equal to σ.

To determine the settling time of a system with multiple poles, determine the characteristic mode
associated with each pole, and then compute the settling time corresponding to that mode. The
largest such settling time is the setting time of the system. The poles associated with the largest
settling time are the dominant poles of the system.

Example 9. Assume we have a system with poles at −5,−4,−3± 2j. Determine the settling
time and the dominant poles of the system.

We have the settling times T 1
s = 4

5
, T 2

s = 4
4
, and T 3

s = 4
3
. The largest of these is Ts = 4

3
, so this

is the estimated settling time of the system. This settling time is associated with the poles at
−3± 2j, so these are the dominant poles.

Example 10. Assume we have a system with poles at −2 ± 3j,−1,−5 ± 2j. Determine the
settling time and the dominant poles of the system.

We have the settling times T 1
s = 4

2
, T 2

s = 4
1
, and T 3

s = 4
5
. The largest of these is Ts = 4

1
, so this

is the estimated settling time of the system. This settling time is associated with the pole at
−1, so this is the dominant pole.

While the poles of the system determine the characteristic modes of the system, the amplitudes
that multiply these modes (the ai in the partial fraction expansion) are determined by both the
poles and zeros of the system. In addition, when a pole is repeated, the form of the characteristic
mode is tne−σt (multiplied by sine or cosine for complex poles). Neither of these affects, the
zeros of a system and the effects of repeated poles, was considered in estimating the settling
time for a system. However, the approximation we have made is usually fairly reasonable.

Dominant poles are the slowest responding poles in a system. If we want faster response, these
are the poles we must move away from the ω axis.

51

7 Time Domain Response and System Bandwidth

The relationship between the time domain and frequency domain is something we must be aware
of when designing control systems. While we want our system to respond quickly , i.e., have a
small settling time, we have to realize what effects this has in the frequency domain. We will be
dealing predominantly with lowpass systems in this course. For these systems we will define the
bandwidth of a system to be that frequency ωb where the magnitude has fallen 3 dB from the
magnitude at dc, or zero frequency. Hence the bandwidth defines the the half power frequency
of the system, or that frequency when

1

2
|H(0)|2 = |H(jωb)|2

Consider a first order system described by the transfer function

G(s) =
K

τs + 1
=

(
K
τ

)

s + 1
τ

where K is the static gain and τ is the time constant. The pole of the system is a − 1
τ
. Assuming

the system is initially at rest, the unit step response of the system will be given by

y(t) = K(1− e−
t
τ)u(t)

If we want faster response, we want the time constant τ to become smaller, which means the
magnitude of poles of the system become larger (the poles move farther away from the jω axis.
Figure 12 displays the step response and corresponding frequency response (more precisely, the
magnitude portion of the frequency response) for K/τ = 1 (this ratio is fixed) and τ = 1,
τ = 1/10 and τ = 1/100, which corresponds to poles at -1, -10, and -100. As this figure
indicates, as the response of the system becomes faster (in the time domain), the bandwidth of
the system increases. For this system the bandwidth will be determined by the pole location,
or ωb = 1/τ . Thus the speed of response is directly related to the bandwidth of the system.

Now let’s consider a transfer function with two distinct poles, say at −p1 and −p2, so the
transfer function is

G(s) =
K

(s + p1)(s + p2)

and the unit step response for p1 6= p2 is given by

y(t) =

[
K

p1p2

+
K

(p1 − p2)p1

e−p1t +
K

(p2 − p1)p2

e−p2t

]
u(t)

Figure 13 displays the step response and corresponding frequency response when K/p1p2 = 1
and p1 = 1, p2 = 2, p1 = 1, p2 = 10, and p1 = 1, p2 = 100 and Figure 14 for K/p1p2 = 1 and
p1 = 6, p2 = 7, p1 = 6, p2 = 20, and p1 = 6, p2 = 40.

As these figures demonstrate, the speed of response is determined by the pole closest to the
jω axis, the dominant pole. The bandwidth of the system is also determined by the dominant
pole. While the second pole affects the shape of both the time and frequency response, it is
the dominant pole that really determines the speed of response and the bandwidth. Here the

52

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 τ = 1, p = 1/τ = 1

D
is

pl
ac

em
en

t

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
 τ = 0.333, p = 1/τ = 3

D
is

pl
ac

em
en

t

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
τ = 0.1, p = 1/τ = 10

D
is

pl
ac

em
en

t

Time (sec)

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 3

10
−1

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 10

Frequency (rad/sec)

Figure 12: The unit step response and bandwidth for three first order systems. The magnitude
of the system pole p is equal to the bandwidth ωb.

53

0 2 4 6
0

0.2

0.4

0.6

0.8

1

 p
1
 = 1, p

2
 = 2

D
is

pl
ac

em
en

t

0 2 4 6
0

0.2

0.4

0.6

0.8

1

 p
1
 = 1, p

2
 = 10

D
is

pl
ac

em
en

t

0 2 4 6
0

0.2

0.4

0.6

0.8

1

p
1
 = 1, p

2
 = 100

D
is

pl
ac

em
en

t

Time (sec)

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 1

10
−1

10
0

10
1

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 1

Frequency (rad/sec)

Figure 13: The unit step response and bandwidth for three second order systems with distinct
poles. The rate of response is dominated by the dominant pole at -1, and the bandwidth (-3 dB
point) is determined by this dominant pole.

54

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 p
1
 = 6, p

2
 = 7

D
is

pl
ac

em
en

t

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

 p
1
 = 6, p

2
 = 20

D
is

pl
ac

em
en

t

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

p
1
 = 6, p

2
 = 40

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 6

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 ω
b
 = 6

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

ω
b
 = 6

Frequency (rad/sec)

Figure 14: The unit step response and bandwidth for three second order systems with distinct
poles. The rate of response is dominated by the dominant pole at -6, and the bandwidth (-3 dB
point) is determined by this dominant pole.

55

bandwidth is determined by ωb = min(p1, p2). Clearly, if we were to add additional distinct
poles to this system, the response would be determined by the dominant poles.

Now let’s look at a system with complex conjugate poles, such as our ideal second order
system. For an ideal second order system with transfer function

G(s) =
K

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kω2

n

s2 + 2ζωns + ω2
n

the poles are located at −ζωn±jωd, which is commonly written as −σ± jωd. The characteristic
modes that go with these poles are of the form

e−σt cos(ωdt)

e−σt sin(ωdt)

Hence the speed of response will be governed by σ, which is the real part of the pole. The
bandwidth of the system is more complicated to determine. As a simple rule, for a fixed ωd

(the imaginary part of the pole), as σ gets larger the bandwidth gets larger. Figures 15 and 16
display the both the step and frequency responses (magnitude only) of an ideal second order
systems with complex poles at [−5 ± 4j, −10 ± 4j, −50 ± 4j] and [−5 ± 15j, −10 ± 15j,
−50± 15j], respectively. Note again, comparing these figures, that it is the real part of the pole
that determines the settling time, not the imaginary part.

Why, you might ask, do we care about the bandwidth? There are two reasons. The first is
that the bandwidth tells us the types of signals our system will be able to follow. We all know
that if the input to a system G(s) is x(t) = Acos(ω0t), that in steady state the output of the
system will be given by

y(t) = A|G(jω0)| cos(ω0t + 6 G(jω0))

Hence if the input to our system oscillates “faster” than cos(ωbt), or has higher frequency content
than ωb, where ωb is the bandwidth, our system will not be able to follow this input very well.
More accurately, the output of the system will oscillate at the same frequency as the input, but
with a substantially reduced amplitude.

The second reason we care about bandwidth is that all real systems have noise in them.
This noise is often introduced to the system by the sensors we need to make measurements,
such as measuring the system position or velocity. A fairly reasonable model for noise is
white noise. White noise is basically modelled as having constant power spectral density (the
power/frequency) of N0/2, or

Sxx(ω) =
N0

2

If the noise is the input to a system with transfer function G(ω), then the output power spectral
density Syy(ω)is given by

Syy(ω) = |G(ω)|2Sxx(ω)

= |G(ω)|2N0

2

56

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 5, ω
d
 = 4

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 10, ω
d
 = 4

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 σ = 50, ω
d
 = 4

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 5

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 10

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

σ = 50

Frequency (rad/sec)

Figure 15: The unit step response and bandwidth for three second order systems with distinct
complex conjugate poles. The imaginary parts of the poles are fixed at ±4. Note that the faster
the time domain response the larger the system bandwidth.

57

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 5, ω
d
 = 15

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 σ = 10, ω
d
 = 15

D
is

pl
ac

em
en

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 σ = 50, ω
d
 = 15

D
is

pl
ac

em
en

t

Time (sec)

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 5

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

 σ = 10

10
0

10
1

10
2

−40

−35

−30

−25

−20

−15

−10

−5

0

5

dB

σ = 50

Frequency (rad/sec)

Figure 16: The unit step response and bandwidth for three second order systems with distinct
complex conjugate poles. The imaginary parts of the poles are fixed at ±15. Note that the
faster the time domain response the larger the system bandwidth.

58

If we want the average noise power, PN , we need to integrate the power spectral density over
the frequency range on interest. Since we are mostly considering low pass systems, the range we
are interested in is from −ωb to ωb, or

PN =
∫ ωb

−ωb

Syy(ω)dω

=
∫ ωb

−ωb

|G(ω)|2N0

2
dω

If we model the magnitude of the transfer function, |G(ω)|, as a constant B over the bandwidth,

|G(ω)| =

{
0 |ω| > |ωb|
B |ω| < |ωb|

we get the average noise power estimate

PA = N0B
2ωb

Hence to reduce the average noise power in our system, we want ωb small. However, this usually
means a slower response in the time domain. Bummer.

59

8 Basic Feedback Configuration

The most basic feedback configuration we will deal with is shown below

R(s)
- Gpf

-±°
²¯

- Gc(s) - Gp(s) -
Y (s)

¾H(s)

6

+-

Here R(s) is the reference input. This is usually the signal we are trying to follow. Gpf (s) is a
prefilter which is usually used to condition the signal (change units) or to scale the input to fix
the final value of the output. Gp(s) is a model of the plant we are trying to control. Gc(s) is
a controller (or product of controllers) we have designed to improve performance. Y (s) is the
system output, and H(s) is a signal conditioner often used to change the units of the output
into more convenient units. Two other variables that are usually identified in the block diagram
are shown below:

R(s)
- Gpf

-±°
²¯

-
E(s)

Gc(s) -
U(s)

Gp(s) -
Y (s)

¾H(s)

6

+-

Here U(s) is the input the the plant, so Y (s) = Gp(s)U(s). Finally, E(s) is the error signal, or
actuating error.

To determine the overall transfer function, we find

Y (s) = Gp(s)U(s)

= Gp(s)Gc(s)E(s)

and

E(s) = Gpf (s)R(s)−H(s)Y (s)

Combining these we get

Y (s) = Gp(s)Gc(s) [Gpf (s)R(s)−H(s)Y (s)]

= Gpf (s)Gc(s)Gp(s)R(s)−Gc(s)Gp(s)H(s)Y (s)

Y (s) + Gc(s)Gp(s)H(s)Y (s) = Gpf (s)Gc(s)Gp(s)R(s)

Y (s) [1 + Gc(s)Gp(s)H(s)] = Gpf (s)Gc(s)Gp(s)R(s)

or the closed-loop transfer function is

G0(s) =
Y (s)

R(s)
=

Gpf (s)Gc(s)Gp(s)

1 + Gc(s)Gp(s)H(s)

60

9 Model Matching

The first type of control scheme we will discuss is that of model matching. Here, we assume we
have a plant Gp(s) with a controller Gc(s) in a untiy feedback scheme, as shown below.

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

For this closed-loop feedback system, the closed-loop transfer function G0(s) is given by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

The object of this course is to determine how to choose the controller Gc(s) so the overall system
meets some design criteria. The idea behind model matching is to assume we know what we
want the closed loop transfer function G0(s) to be. Then, since G0(s) and Gp(s) are known, we
can determine the controller Gc(s) as

[1 + Gc(s)Gp(s)] G0(s) = Gc(s)Gp(s)

G0(s) + Gc(s)Gp(s)G0(s) = Gc(s)Gp(s)

G0(s) = Gc(s)Gp(s)−Gc(s)Gp(s)G0(s)

G0(s) = Gc(s)Gp(s) [1−G0(s)]

or

Gc(s) =
G0(s)

Gp(s) [1−G0(s)]

If we write Gp(s) = N(s)
D(s)

and G0(s) = N0(s)
D0(s)

, we can rewrite this as

Gc(s) =
N0(s)D(s)

D0(s)N(s)−N(s)N0(s)

This form is often easier to work with. However, we still have to be careful to eliminate common
factors from the numerator and denominator.

61

While this type of model matching looks simple, there are certain restrictions on when this
will work. The closed loop transfer function G0(s) is said to be implementable if1

1. The controller Gc(s) is a proper rational transfer function

2. The controller Gc(s) is stable

Consider a plant with proper transfer function Gp(s) = N(s)
D(s)

where we want the closed loop

transfer function to be G0(s) = N0(s)
D0(s)

. We can find a Gc(s) so that G0(s) is implementable only
under the following conditions:

1. The degree of D0(s) - the degree of N0(s) ≥ the degree D(s) - the degree of N(s)

2. All right half plane zeros of N(s) are retained in N0(s) (the RHP zeros of the plant must
also be in the closed-loop transfer function)

3. G0(s) is stable, i.e., all poles of G0(s) are in the left half plane (none on the axes)

Example 1. Consider the system with plant

Gp(s) =
(s + 2)(s− 1)

s(s2 − 2s + 2)

Are the following closed loop transfer functions implementable?

1. G0(s) = 1. (No, it violates (1) and (2))

2. G0(s) = (s+2)
(s+3)(s+1)

. (No, violates (2))

3. G0(s) = (s−1)
(s+3)(s+1)

. (Yes)

4. G0(s) = (s−1)
s(s+2)

. (No, violates (3))

5. G0(s) = (s−1)
(s+3)(s+1)2

. (Yes)

6. G0(s) = (s−1)(2s−3)
(s+2)3

. (Yes)

Now that we know when we can use model matching, we need to find some good models. That is,
how do we find a desirable G0(s)? We will look at four possible choices, ITAE optimal systems,
deadbeat systems, quadratic optimal systems, and steady state frequency response matching.

1There are other restrictions, but they are not important in this course.

62

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 17: The unit step response for a third order ITAE system with ω0 = 2, 3 and 6 radi-
ans/second. This system will have a steady state error of zero for a step input.

9.1 ITAE Optimal Systems

ITAE optimal systems minimize the Integral of Time multiplied by the Absolute Error. These
have been determined numerically. The second, third, and fourth order ITAE systems with a
steady state error of zero for a step input have the following closed loop transfer functions

G0(s) =
ω2

0

s2 + 1.4ω0s + ω2
0

G0(s) =
ω3

0

s3 + 1.75ω0s2 + 2.15ω2
0s + ω3

0

G0(s) =
ω4

0

s4 + 2.1ω0s3 + 3.4ω2
0s

2 + 2.7ω3
0s + ω4

0

Since G0(0) = 1 for each of these closed loop transfer functions the steady state error will clearly
be 0 for a step input. Figure 17 shows the step response for a third order ITAE system with
ω0 = 2, 3 and 6 radians/second. As this figure shows, the larger the value of ω0, the faster the
response of the system.

The second, third, and fourth order ITAE systems that have zero steady state errors for both
step and ramp inputs have the following closed loop transfer functions

G0(s) =
3.2ω0s + ω2

0

s2 + 3.2ω0s + ω2
0

G0(s) =
3.25ω2

0s + ω3
0

s3 + 1.75ω0s2 + 3.25ω2
0s + ω3

0

63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 18: The unit step response for a third order ITAE system that has zero steady state
error for both a step and ramp input with ω0 = 2, 3 and 6 radians/second.

G0(s) =
5.14ω3

0s + ω4
0

s4 + 2.41ω0s3 + 4.93ω2
0s

2 + 5.14ω3
0s + ω4

0

Since the coefficients of s1 and s0 are identical for both the numerator and denominator of
these closed loop transfer functions, the steady state errors will be zero for both step and ramp
inputs. Figure 18 shows the step response for a third order ITAE system with ω0 = 2, 3 and 6
radians/second. As this figure shows, we are paying for the steady state errors for both a step
and ramp input with a substantial overshoot. As with the ITAE systems with zero steady state
error for only a step input, the larger the value of ω0, the faster the response of the system.

You, the designer, need to choose the value of ω0. The larger the ω0, the faster the system
responds (good) and the larger the control effort (bad).

9.2 Deadbeat Systems

A deadbeat response is a response that that proceeds rapidly to the desired level and holds that
level with minimal overshoot. These have also been determined numerically. The second, third,
and fourth order closed loop transfer functions for deadbeat control are

G0(s) =
ω2

0

s2 + 1.82ω0s + ω2
0

G0(s) =
ω3

0

s3 + 1.90ω0s2 + 2.20ω2
0s + ω3

0

64

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

Time (sec)

P
os

iti
on

ω
0
 = 2

ω
0
 = 3

ω
0
 = 6

Figure 19: The unit step response for a third order deadbeat system with ω0 = 2, 3 and 6
radians/second.

G0(s) =
ω4

0

s4 + 2.20ω0s3 + 3.50ω2
0s

2 + 2.80ω3
0s + ω4

0

Since G0(0) = 1 for each of these closed loop transfer functions, it should be clear that we
will have ess = 0 for a step input. However the steady state error will not be zero for a ramp
input. Figure 19 shows the step response for a third order deadbeat response for ω0 = 2, 3 and
6 radians/second. Comparing Figure 19 with Figure 17, it is clear that the ITAE and deadbeat
responses are quite similar. This is also clear by examining the transfer functions. As with the
ITAE systems, the larger the value of ω0 the faster the response of the system (good) and the
more control effort (bad) required.

9.3 Quadratic Optimal Systems

For a quadratic optimal system, we want to find the closed loop transfer function G0(s) to
minimize the quadratic performance index

J =
∫ ∞

0

{
q [y(t)− r(t)]2 + u2(t)

}
dt

where y(t) is the output of the system, r(t) is the input to the system, q is a positive constant
that weighs the difference between the input to the system and the output to the system, and
u(t) is the actuating signal (the input to the plant we are trying to control). In general, for
this type of controller, we want the output of our system to match (or track) the input to the

65

system. To determine G0(s) to solve this problem, we need to first discuss spectral factorization.

Consider first the plant with proper transfer function Gp(s) = N(s)
D(s)

where D(s) and N(s) have
no common factors. Next, consider the polynomial

Q(s) = D(s)D(−s) + qN(s)N(−s)

Clearly Q(−s) = Q(s), hence if s1 is a root of Q(s), then so is −s1. Since all of the coefficients
of Q(s) are real by assumption (we assume Gp(s) is real), if s1 is a root of Q(s) than so is its
complex conjugate s∗1. Hence, all of the roots of Q(s) are symmetric with respect to

• the real axis

• the imaginary axis

• the origin of the s-plane

Now consider

Q(jω) = D(jω)D(−jω) + qN(jω)N(−jω)

= |D(jω)|2 + q|N(jω)|2

Since D(s) and N(s) have no common factors, there exists no ω0 so that both D(jω0) = 0 and
N(jω0) = 0. Since q 6= 0, there exists no ω0 so that Q(ω0) = 0. Hence Q(s) has no roots on
the jω axis.

Since the roots of Q(s) are either in the left half plane or the right half plane (none on the
jω axis), and since, by symmetry, there will be an equal number in each plane, we will divide
up the roots of Q(s) into those in the open LHP and those in the open RHP. Let’s denote the
polynomial whose roots are those of the open LHP roots of Q(s) as D0(s). Then, by symmetry,
D0(−s) is a polynomial whose roots are the open RHP roots of Q(s). Thus,

Q(s) = D(s)D(−s) + qN(s)N(−s) = D0(s)D0(−s)

This is called the spectral factorization of Q(s). Now we can give the result.

Consider a plant with proper transfer function Gp(s) = N(s)/D(s) where

• N(s) and D(s) have no common factors

• The leading coefficient of D(s) (the coefficient of the highest power of s in D(s)) is 1.
That is, D(s) is monic. This is important!

An implementable transfer function G0(s) that minimizes the performance index

J =
∫ ∞

0

{
q [y(t)− r(t)]2 + u2(t)

}
dt

where r(t) = 1 (a unit step) and q > 0 is given by

G0(s) =
qN(0)N(s)

D0(0)D0(s)

66

where

Q(s) = D(s)D(−s) + qN(s)N(−s) = D0(s)D0(−s)

Note that we are not guaranteed a zero steady state error with this method. For a zero steady
state error for a step input, we should have G0(0) = 1. In addition, if N(s) = s this will not
work (since N(0) = 0).

Example 2. Suppose we have the plant with transfer function

Gp(s) =
1

s2 + 1

and we want to find G0(s) to minimize

J =
∫ ∞

0

{
10 [y(t)− r(t)]2 + u2(t)

}
dt

Clearly q = 10, Gp(s) is a proper transfer function, N(s) and D(s) have no common factors,
and D(s) is a monic polynomial. Now N(s) = 1, D(s) = s2 + 1, and D(s) is monic. So we have

D(s) = s2 + 1 N(s) = 1

D(−s) = s2 + 1 N(−s) = 1

and

Q(s) = D(s)D(−s) + qN(s)N(−s)

=
[
s2 + 1

] [
s2 + 1

]
+ 10 [1] [1]

=
[
s4 + 2s2 + 1

]
+ 10 [1]

= s4 + 2s2 + 11

Note that Q(s) is an even function of s. If it is not, you screwed up! Now, we need to find the
roots of Q(s). These roots are −1.0762± 1.4691j and 1.0762± 1.4969j. To construct D0(s), we
use only those roots in the LHP, i.e. the roots at −1.0762± 1.4691.

D0(s) = (s + 1.0762− 1.4691j)(s + 1.0762 + 1.4691j)

D0(s) = s2 + 2.1525s + 3.3166

Now, we can compute the optimal G0(s) as

G0(s) =
qN(0)N(s)

D0(0)D0(s)
=

(10)(1)(1))

(3.3166)(s2 + 2.1525s + 3.3166)

=
3.01514

s2 + 2.1525s + 3.3166

Note that G0(0) = 0.909, which yields a steady state error of ess = 0.091. To achieve a steady
state error of zero we need a prefilter with a value of Gpf = 1/0.909 = 1.100. Finally, to
determine the controller, we use the formula

Gc(s) =
G0(s)

Gp(s) (1−G0(s))

67

which produces the controller

Gc(s) =
1.401s2 + 1.401

0.4646s2 + s + 0.1401

=
1.401[s2 + 1]

0.4646s2 + s + 0.1401

Note that the controller has been scaled, and there will be a pole/zero cancellation between the
plant and the controller. Since these are marginally stable poles, this may not be a good idea.

Example 3. Suppose we have the plant with transfer function

Gp(s) =
0.3(s + 2)

0.01s2 + 0.2s + 1

and we want to find G0(s) to minimize

J =
∫ ∞

0

{
15 [y(t)− r(t)]2 + u2(t)

}
dt

Clearly q = 15, Gp(s) is a proper transfer function, and N(s) and D(s) have no common factors.
However, before we use the algorithm, we must be sure D(s) is a monic polynomial. To do this,
we multiply both the top and bottom by 100

Gp(s) =
100

100

0.3(s + 2)

0.01s2 + 0.2s + 1
=

30(s + 2)

s2 + 20s + 100

Now N(s) = 30(s + 2), D(s) = s2 + 20s + 100, and D(s) is monic. So we have

D(s) = s2 + 20s + 100 N(s) = 30(s + 2)

D(−s) = s2 − 20s + 100 N(−s) = 30(−s + 2)

and

Q(s) = D(s)D(−s) + qN(s)N(−s)

=
[
s2 + 20s + 100

] [
s2 − 20s + 100

]
+ 15 [30(s + 2)] [30(−s + 2)]

=
[
s4 − 200s2 + 10000

]
+ 15

[
−900s2 + 3600

]

= s4 − 13, 700s2 + 64, 000

Note that Q(s) is an even function of s. If it is not, you screwed up! Now we need to find the
roots of Q(s). These roots are ±117.027 and ±− 2.161. To construct D0(s) we use only those
roots in the LHP, i.e., the roots at -117.027 and -2.161

D0(s) = (s + 117.027)(s + 2.161)

D0(s) = s2 + 119.2s + 252.9

Now, we can compute the optimal G0(s) as

G0(s) =
qN(0)N(s)

D0(0)D0(s)
=

(15)(60)30(s + 2)

(252.9)(s2 + 119.2s + 252.9)

=
106.7(s + 2)

s2 + 119.2s + 252.9

68

Note that G0(0) = 0.8438, which yields a steady state error for a step input of ess = 0.156. For
a steady state error of zero we would need a prefilter with a value of Gpf = 1/0.8438 = 1.185.
Finally, to determine the controller, we use the formula

Gc(s) =
G0(s)

Gp(s) (1−G0(s))

which produces the controller

Gc(s) =
0.09s2 + 1.8s + 9

0.0253s2 + 0.3153s + 1

=
0.09[s2 + 20s + 100]

0.0253s2 + 0.3153s + 1

Note that this controller has been scaled and there is a pole/zero cancellation between the con-
troller and the plant. The poles being cancelled are stable poles, so this is probably acceptable.

9.4 Dynamic Prefilters

Up to this point, we have used only constant prefilters Gpf to scale the input to achieve the
desired steady state error. However, sometimes the plant or the controller introduces zeros into
the closed loop transfer function that we do not want. One way to eliminate these zeros is with
a dynamic prefilter, Gpf (s). This is best illustrated with an example.

Example 4. Suppose we have the plant with transfer function

Gp(s) =
(s + 3)

s2 + 16s + 68

and we want to find G0(s) to minimize

J =
∫ ∞

0

{
8 [y(t)− r(t)]2 + u2(t)

}
dt

Clearly q = 8, Gp(s) is a proper transfer function, N(s) and D(s) have no common factors, and
D(s) is a monic polynomial. Now N(s) = (s + 3), D(s) = s2 + 16s + 68. So we have

D(s) = s2 + 16s + 68 N(s) = (s + 3)

D(−s) = s2 − 16s + 68 N(−s) = (−s + 3)

and

Q(s) = D(s)D(−s) + qN(s)N(−s)

=
[
s2 + 16s + 68

] [
s2 − 16s + 68

]
+ 8 [(s + 3)] [(−s + 3)]

= s4 − 128s2 + 4696

Note that Q(s) is an even function of s. If it is not, you screwed up! Now we need to find the
roots of Q(s). These roots are ±8.1403± j1.5046. To construct D0(s) we use only those roots
in the LHP, i.e., the roots at −8.1403 + j1.5046 and −8.1403− j1.5046

D0(s) = (s + 8.1403− j1.5046)(s + 8.1403 + j1.5046)

D0(s) = s2 + 16.2805s + 68.5274

69

Now, we can compute the optimal G0(s) as

G0(s) =
qN(0)N(s)

D0(0)D0(s)
=

(8)(3)(s + 3)

(68.5274)(s2 + 16.2805s + 68.5274)

=
0.3502(s + 3)

s2 + 16.2805s + 68.5274

Next we adjust the prefilter gain so the steady state error for a step input is zero. Since
G0(0) = 0.01533, we need to set the prefilter gain to 65.22. Finally, the controller is computed
to be

Gc(s) =
0.3502(s2 + 16s + 68)

s2 + 15.9303s + 67.4768

The complete feedback control system is shown below.

R(s)
- 65.22 -±°

²
-̄ 0.3502(s2+16s+68)

s2+15.9303s+67.4768
- (s+3)

s2+16s+68
-

Y (s)

6

+-

The step response of this system is shown in Figure 20. As the figure indicates, the steady state
error for a step input will eventually be zero, but the transient response is less than satisfactory.
At this point, we could go back and increase the value of q and hope for better response, or we
can realize that some of our problem is caused by the zero at -3. Since there is no pole near -3,
there is nothing to effectively cancel this behavior. Hence we want to insert a dynamic prefilter
that will do two things: (1) cancel the zero in the closed loop transfer function, and (2) provide
a steady state error for a step input of 0. Our new closed loop transfer function will be

G0(s) =
Gpf

(s + 3)

0.3502(s + 3)

s2 + 16.2805s + 68.5274

=
Gpf0.3502

s2 + 16.2805s + 68.5274

For zero steady state error for a step input we need

G0(0) =
Gpf0.3502

68.5274
= 1

70

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
os

iti
on

Figure 20: The unit step response of quadratic optimal system from Example 4, utilizing only
a constant prefilter Gpf = 65.22.

or Gpf = 195.68. The complete control system with the dynamic prefilter is shown below:

R(s)
- 195.68

(s+3)
-±°

²
-̄ 0.3502(s2+16s+68)

s2+15.9303s+67.4768
- (s+3)

s2+16s+68
-

Y (s)

6

+-

Figure 21 show the step response with the dynamic prefilter. Note the percent overshoot has
been essentially eliminated, and the transient behavior is now more like that of an overdamped
or critically damped ideal second order system.

While the dynamic prefilter has eliminated the zero from the closed loop transfer function,
and improved the transient response, it should be noted that the prefilter is outside the feedback
loop. In many instances this is not a problem, however, any value outside the feedback loop
is more sensitive to parameter variation and drift than values or transfer functions inside the
feedback loop. We’ll have more to say about this when we discuss system sensitivity later.

71

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

P
os

iti
on

Figure 21: The unit step response of quadratic optimal system from Example 4, utilizing a
dynamic prefilter Gpf = 195.6808

(s+3)
.

9.5 Type One Systems

The method we have presented for determining the quadratic optimal controller will always give
us a stable controller. However, sometimes we might want to change this method slightly which
may either give us an even better controller, or perhaps one which is unstable and therefore
unusable. In our next chapter we will start discussing different system types and how they help
us determine system parameters such as position and velocity errors very quickly. However, at
this point we will revisit two of our previous examples and remove the need for the prefilter.
This will mean that we have no blocks outside the feedback loop and, for these examples, pro-
duce what are called type 1 systems. The general idea is to take the transfer function G0(s)
determined by the quadratic optimal formula, and scale it directly so G0(0) = 1, thus avoiding
the need for a prefilter.

Example 2 (Again). Here we have the plant

Gp(s) =
1

s2 + 1

and we determined that for q = 10 we should have the closed loop transfer function

G0(s) =
3.01514

s2 + 2.1525s + 3.3166

72

and the corresponding controller

Gc(s) =
1.401[s2 + 1]

0.4646s2 + s + 0.1401

and prefilter

Gpf = 1.1001

Now, instead, let’s modify G0(s) so that G0(0) = 1. The easiest way to do this is to multiply
by the prefilter value, so

G0(s) =
1.100 ∗ 3.01514

s2 + 2.1525s + 3.3166

=
3.3166

s2 + 2.152s + 3.3166

Clearly G0(0) = 1. Next we compute Gc(s) as before, to get

Gc(s) =
3.015[s2 + 1]

s2 + 2.212s

Note that now we can factor 1
s

from the controller, which we could not do before. This is a good
thing.

Example 3 (Again). Here we have the plant

Gp(s) =
30(s + 2)

s2 + 20s + 100

and we determined that for q = 15 we should have the closed loop transfer function

G0(s) =
106.7(s + 2)

s2 + 119.2s + 252.9

and the corresponding controller

Gc(s) =
0.09[s2 + 20s + 100]

0.0253s2 + 0.3153s + 1

and prefilter

Gpf = 1.1851

Now, instead, let’s modify G0(s) so that G0(0) = 1. The easiest way to do this is to multiply
by the prefilter value, so

G0(s) =
1.1851 ∗ 106.7[s + 2]

s2 + 119.2s + 252.9

=
126.45[s + 2]

s2 + 119.2s + 252.9

73

Clearly G0(0) = 1. Next we compute Gc(s) as before, to get

Gc(s) =
0.4215[s2 + 20s + 100]

s2 − 7.25s

Note that now we can factor 1
s

from the controller, which we could not do before. This is a
good thing. However, our controller is no longer stable, which means we would not want to
implement it and would use our original controller.

9.6 Frequency Response Matching

Although all of the model matching method presented so far have been time domain models,
we need to keep in mind the fact that everything we do in the time-domain has an effect in
the frequency domain. Thus, when we have designed a closed loop control system with transfer
function G0(s), we have to realize that we have really constructed a filter between the input and
output signal! Hence, if the input to our system is u(t) = A cos(ωt + θ) the steady state output
to our system will be given by

y(t) = A|G0(jω)| cos(ωt + θ + 6 G0(jω))

Example 5. Assume we have designed a controller using model matching techniques so the
closed loop transfer function G0(s) is that of a third order deadbeat system

G0(s) =
ω3

0

s3 + 1.90ω0s2 + 2.20ω2
0s + ω3

0

The step response for this system with ω0 = 10 rad/sec is shown in Figure 22 and the Bode
plot for this system is shown in Figure 23. For this system the bandwidth is the same as ω0,
about 10 rad/sec. Now, in addition to the step response, we may also be interested in how well
our system tracks input signals of varying frequencies. Figures 24 and 25 display the output of
our control system/filter when the input consists of sine waves with unit amplitude and varying
frequencies, from ω = 0.25ω0 to ω = 2ω0. These figures display the same information that the
Bode plot does in a different way. For input frequencies between 0 and ω0, the output signal
has a magnitude of 1 (for zero frequency) down to 0.707 (for ω = ω0). As the input frequency
increases beyond ω0, the amplitude of the output decreases substantially. In addition to the
amplitude, we usually need to worry about the phase. In a control system we usually want the
output to equal the input, in both magnitude and phase. For this system we see that as the
input frequencies increase, the phase difference between the input and output signals increases,
which corresponds to a longer delay between the input and output signal.

Although in the majority of this course we are concerned with following time-domain signals
such as steps and ramps, it may be important sometimes to be able to design a system that
meets certain frequency domain criteria. One way we can approach this is again by using a
model matching method. However, this method assumes you can determine a transfer function
that meets the required frequency domain requirements and is still implementable.

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
os

iti
on

Figure 22: The unit step response of the third order deadbeat system from Example 5 (ω0 = 10
rad/sec.)

−120

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

−270

−180

−90

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 23: The Bode plot of the third order deadbeat system from Example 5 (ω0 = 10 rad/sec.)

75

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 0.25 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 0.5 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 0.75 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = ω
0

Time (sec)

Input
Output

Figure 24: The response of the third order deadbeat system from Example 5 (ω0 = 10 rad/sec)
to input sine waves with amplitude 1 of varying frequency ω ≤ ω0.

76

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 1.25 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 1.5 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 1.75 ω
0

Input
Output

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

ω = 2ω
0

Time (sec)

Input
Output

Figure 25: The response of the third order deadbeat system from Example 5 (ω0 = 10 rad/sec)
to input sine waves with amplitude 1 of varying frequency ω > ω0.

77

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

−45

0

45

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 26: The frequency response of a notch filter with ω0 = 6π and ζ0 = 0.1.

Example 6. Let’s assume that we have a plant with the transfer function

Gp(s) =
10

s2 + s + 2

In addition, let’s assume we want to have zero steady state error for a step input and the output
track the input as well as possible. However, any input signal at 3 Hz is to be eliminated since it
is likely to be interference from another part of the system. Hence we want our control system
to look something like a notch filter. One example of a second order notch filter is given by a
transfer function of the form

Gn(s) =
s2 + 2ζ0ω0s + ω2

0

s2 + ω0s + ω2
0

Here ω0 is the notch frequency and ζ0 controls the width of the notch. Since we want to
eliminate input signals with frequencies at 3∗2π radians/sec, we set ωc = 6π = 18.8 radians/sec.
Figures 26, 27 and 28 display the Bode plot of this filter for ζ0 = 0.1, 0.01, and 0.001, respectively.
Figures 29 and 30 show the time domain response for input sin waves of various frequencies for
the notch filter shown in 28, i.e., with ω0 = 6π and ζ0 = 0.001. As these figures demonstrate, as
the frequency of the input sine wave increases towards ω0, there is a lag between the input and
output signals, while as the frequency of the input sine wave increases beyond ω0 the output
signal leads the input signal until the input signal is greater than approximately 2ω0. Theses
figures also show the steady state output of the system is zero when the input sine wave has a
frequency equal to ω0. Note that this output is not always zero at this frequency, just during
steady state.

78

−40

−35

−30

−25

−20

−15

−10

−5

0

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

−90

−45

0

45

90

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 27: The frequency response of a notch filter with ω0 = 6π and ζ0 = 0.01.

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

−90

−45

0

45

90

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 28: The frequency response of a notch filter with ω0 = 6π and ζ0 = 0.001.

79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 0.25 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 0.5 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 0.75 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = ω
0

Time (sec)

Input
Output

Figure 29: The response of the notch filter from Example 6 (Figure 28, ω0 = 6π rad/sec,
ζ0 = 0.001) to input sine waves with amplitude 1 of varying frequency ω ≤ ω0.

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 1.25 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 1.5 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 1.75 ω
0

Input
Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

ω = 2ω
0

Time (sec)

Input
Output

Figure 30: The response of the notch filter from Example 6 (Figure 28, ω0 = 6π rad/sec,
ζ0 = 0.001) to input sine waves with amplitude 1 of varying frequency ω > ω0.

81

This transfer function seems to accomplish what we want reasonably well, so we might be
tempted to try and determine the controller directly using the formula

Gc(s) =
G0(s)

Gp(s)(1−G0(s))

as before. However, there is a problem. In order for G0(s) to be implementable we need to
match the three conditions in the beginning of this chapter. The only one we will have difficulty
with is (1): the degree of D0(s) - degree of N0(s) ≥ degree D(s) - degree N(s). For this notch
system we have degree D0(s) - degree N0(s) = 0 and degree D(s) - degree N(s) = 2. It looks
like we can’t use model matching in this case. However, we can if we think a little bit and then
modify our desired system.

In any real system all of the input signals we care about will be bandlimited, i.e., they will
have not frequency content above a certain frequency. One way to think about this is to think
about the Fourier series representation for a periodic signal x(t). When we try to reconstruct
the original signal by summing its Fourier series, at some point there does not seem to be any
improvement. If we stop summing the Fourier series at the N th term in the series, then the
bandwidth of the signal is approximately Nωf , where ωf is the fundamental frequency. In
addition to the input signal, we must be aware of the fact that there is always noise in any
system. Hence, we want to limit the bandwidth of our system to limit noise in the system while
making the system bandwidth large enough for any likely input signal. We have not been given
any minimum bandwidth in this problem, so let’s make a reasonable assumption that our input
signal has no frequency content above 80 Hz. This is a fairly reasonable assumption for many
mechanical systems. Hence we want to limit the bandwidth beyond 80 Hz. Since we need two
poles for our Go(s) to be implementable, let’s add two poles at 80∗2π, so the closed loop transfer
function looks like

Go(s) =
s2 + 2ζ0ω0s + ω2

0

(s2 + ω0s + ω2
0)(s + 160π)2

While these poles help with the bandwidth, we should be aware that the also contribute to the
phase of the system. Finally, we probably still want ep = 0, so we need G0(0) = 1, hence our
final closed loop transfer function is

G0(s) =
(160π)2(s2 + 0.0120π36π2)

(s2 + 6πs + 36π2)(s + 160π)2

=
252, 661.8(s2 + 0.0377s + 355.3)

(s2 + 18.8s + 355.3)(s + 502.6)2

The frequency response for this system is displayed in Figure 31. As the figure indicates, the
system bandwidth is limited to about 80 ∗ 2π = 502.6 radians/sec and the notch will eliminate
the 3Hz signals. Figure 32 shows the step response for this system. Finally, we can determine
the controller as

Gc(s) =
25, 266.2s4 + 26, 218.7s3 + 9, 028, 706.7s2 + 8, 979, 126.9s + 17, 954, 443.7

s4 + 1, 024.2s3 + 19, 304.9s2 + 5, 110, 231.3s

There are some very large numbers in this controller, and we probably need to “balance” the
coefficients before we implement this, but that’s the subject of another class.

82

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

10
5

−180

−90

0

90

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 31: The frequency response of the final notch filter from Example 6. Here ω0 = 6π
rad/sec, ζ0 = 0.001, and we have added two poles at 160π radians/second.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

P
os

iti
on

Figure 32: The unit step response of the final notch filter from Example 6. Here ω0 = 6π
rad/sec, ζ0 = 0.001, and we have added two poles at 160π radians/second.

83

9.7 Summary and Caveates

In the first part of this section, the conditions under which it is possible to to obtain an im-
plementable closed loop transfer function G0(s) have been given, it may not be possible to find
such a G0(s) using the ITAE, deadbeat, or quadratic optimal criteria. In particular, the ITAE
and deadbeat methods will not work for a system with RHP zeros in the plant.

The model matching methods we have discussed often utilize pole-zero cancellations between
the controller Gc(s) and the plant Gp(s) to achieve the desired closed-loop transfer function.
This requires that we have a fairly good model of the plant being cancelled. If we have a good
model of the plant and a stable pole is being cancelled, this is usually OK. However cancelling
an unstable pole is not acceptable. In addition, the plant may change over time, and we are
dealing with models of the plant in the first place. Hence the pole-zero cancellations may not
be very effective for some systems.

84

10 System Type and Steady State Errors

10.1 Review

Let’s assume we have a control system in a unity feedback configuration as shown below:

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

where Gp(s) is the plant transfer function and Gc(s) is a controller. Note that there is no
prefilter! The closed-loop transfer function is given by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

We already know that if we write

G0(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + b1s + b0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

that the steady state error for an input step of amplitude A is given by

ess = A
d0 − n0

d0

If G0(0) = 1 (the constant terms in the numerator and denominator are the same), then ess = 0.
The steady state error for an input of tA is given by

ess = A
d1 − n1

d0

If the coefficients of s1 and s0 are the same, then the steady state error for a ramp input is zero.

10.2 System Type For a Unity Feedback Configuration

Unity feedback configurations are very common, and we would like to be able to analyze this
type of system very quickly without computing the closed-loop transfer function.

Let’s assume we group the all of the transfer functions together into one transfer function, which
we will call G(s), so G(s) = Gc(s)Gp(s). Assume we write G(s) as2

G(s) =
K(Tas + 1)(Tbs + 1)...(Tms + 1)

sN(T1s + 1)(T2s + 1)...(Tns + 1)

2We do not actually want to rewrite G(s), this is just used for illustrative purposes.

85

This is said to be a type N system, where N is the number of poles at the origin of G(s). (These
poles at the origin are also called “free integrators” or just ”integrators”.) If the system output
is Y (s) and the system input is R(s), then the system transfer function is

Y (s)

R(s)
=

G(s)

1 + G(s)

Let’s define the error E(s) to be the difference between the input R(s) and the output Y (s),

E(s) = R(s)− Y (s)

= R(s)− G(s)

1 + G(s)
R(s)

=
R(s) {[1 + G(s)]−G(s)}

1 + G(s)

=
R(s)

1 + G(s)

The steady state error is then

ess = lim
s→0

sE(s) = lim
s→0

sR(s)

1 + G(s)

We will use this expression to determine expressions for the steady state error for both step and
ramp inputs for unity feedback systems.

10.3 Steady State Errors for Step and Ramp Inputs

As we have previously defined, the steady state error for a step input is the difference between a
step input r(t) and the corresponding output y(t) as we let t →∞. Hence, ess = lims→0 sE(s)
for R(s) = A

s
, or

ess = lim
s→0

sE(s)

= lim
s→0

sA
s

1 + G(s)

= lim
s→0

A

1 + G(s)

=
A

1 + G(0)

=
A

1 + Kp

The position error constant Kp is defined to be G(0). For a type 0 system, Kp = K and

ep = A
1+K

, while for a type 1 or higher system, Kp = ∞ and ess = 0.

86

The steady state error for a ramp input is the difference between the ramp input r(t) and the
corresponding output y(t) as we let t →∞. Hence ess = lims→0sE(s) for R(s) = A

s2 , or

ess = lim
s→0

sE(s)

= lim
s→0

s A
s2

1 + G(s)

= lim
s→0

A

s + sG(s)

= lim
s→0

A

sG(s)

=
A

Kv

The velocity error constant Kv is defined to be lims→0 sG(s). For a type 0 system, Kv = 0 and

ess = ∞. For a type 1 system, Kv = K and ess = A
K

. For a type 2 or higher system, Kv = ∞
and ess = 0.

We can summarize these results in Table 1 below.

System Type ess for step input Au(t) ess for ramp input Atu(t)
0 A

1+Kp
∞

1 0 A
Kv

2 0 0
3 0 0

Table 1: Summary of system type (number of poles at the origin), steady state error for a step
input Au(t), and steady state error for a ramp input Atu(t) for a unity feedback system.

10.4 Examples

Example 1. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

-
½¼

¾»
- s+1

s+2
- 1

s+3
-

6

+
-

Here

G(s) =
(s + 1)

(s + 2)(s + 3)

87

there are no poles at zero so this is a type 0 system. The position error constant is then

Kp = lim
s→0

G(s)

=
1

(2)(3)

=
1

6

so for a step input

ess =
A

1 + Kp

=
A

1 + 0.1667
= 0.857A

Since ess is not zero for a step input, ess = ∞ for a ramp input. (ess = ∞ for a ramp input
since this is a type 0 system).

Example 2. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

-
½¼

¾»
- s+1

s
- s+4

s2+2s+3
-

6

+
-

Here

G(s) =
(s + 1)(s + 4)

s(s2 + 2s + 3)

so there is one pole at zero, hence this is a type 1 system. The steady state error for a step input
is then ess = 0. Note that we do not need to do any computation for this once we recognize this
as a type 1 system! The velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

3

=
4

3

so the steady state error for a ramp input is

ess =
A

Kv

88

=
A(
4
3

)

= 0.75A

Example 3. For the unity feedback system shown below, determine the system type, the steady
state error for a step input and the steady state error for a ramp input.

-
½¼

¾»
- s+1

s+6
- 4

s2+2s
-

6

+
-

Here

G(s) =
(s + 1)(4)

(s + 6)s(s + 2)

there is one pole at zero so this is a type 1 system. The steady state error for a step input is
then ess = 0. The velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

(6)(2)

=
1

3

so the steady state error for a ramp input is

ess =
A

Kv

=
A(
1
3

)

= 3A

Example 4. For the unity feedback system shown below, determine the system type, the steady

89

state error for a step input and the steady state error for a ramp input.

-
½¼

¾»
- s+1

s
- 4

s2+2s
-

6

+
-

Here

G(s) =
(s + 1)(4)

s2(s + 2)

there are two poles at zero so this is a type 2 system. Hence the steady state error for both a
step input and a ramp input are zero.

90

11 Controller Design Using the Root Locus

The root locus is a graph in the complex plane that shows how the poles of a closed loop system
vary as a single parameter varies. Points on the root locus are the only possible closed loop pole
locations! If a point is not on the root locus, it is not possible for a closed loop pole to be located
there (with the controller under consideration).

Knowledge of the location of the closed loop poles helps estimated the step response of a
system and if a system is likely to become unstable for some values of a varying parameter.
However, the zeros of the system also affect the step response, and how they affect the step
response is not as apparent from the root locus. Matlab’s sisotool is a very powerful tool for
utilizing the root locus to produce the desired step response. In this chapter some of the more
basic rules for constructing the root locus are included. The goal is not to necessarily be able to
draw a root locus in all it’s detail, but rather to understand what is going on and determine if
a particular type of controller is likely to ever work. With the exception of the first rule, there
will be no motivation or derivation for the rule. As far as we are concerned, they just are.

After the root locus is introduced, we will introduce proportional, integral, derivative, and
lead controllers, as well as various useful combinations. We will then utilize the root locus in
conjunction with these controller to determine if it is possible to use one of these controllers to
accomplish what we want. Mostly we want to rule out controllers that we know won’t work.

Special Note: In the following examples, it cannot be stressed enough that our guidelines
for settling time and percent overshoot are based on a closed loop transfer function which is an
ideal second order system, which contains no zeros. As long as there are only poles in the closed
loop transfer function these estimates tend to work fairly well. However, once the closed loop
transfer function has zeros, these estimates may no longer be very accurate. This is when a
tool like Matlab’s sisotool is extremely valuable. In the following sections, the ability to meet the
design constraints will be based soley on the locations of the closed loop poles and the assumption
of an ideal second order system. The only way to really tell if a model of a system meets the
design specifications is to simulate the response of the model.

11.1 Standard Root Locus Form

In order to use the root locus techniques (and Matlab), we need to write the equation for the
closed loop poles in the standard form

1 + kG(s) = 0

where k is the only free parameter. It is important to remember that we are using the root locus
to determine the closed loop pole locations, not the locations of the closed loop zeros.

91

Example 1. Consider the following system:

-
½¼

¾»
- 1

s+2
-

ks
s+3

6

+
-

We would like to use the root locus to determine the locations of the closed loop poles as the
parameter k varies. To do this, we must first determine the closed loop transfer function.

G0(s) =

(
1

s+2

)

1 +
(

ks
s+3

) (
1

s+2

)

Hence the equation we need is

1 + k

[
s

(s + 2)(s + 3)

]
= 0

and

G(s) =
s

(s + 2)(s + 3)

Example 2. Consider the following system:

-
½¼

¾»
- s

s+1
- 1

s+β
-

6

+
-

We would like to use the root locus to determine the locations of the closed loop poles as the
parameter β varies. To do this, we must first determine the closed loop transfer function.

G0(s) =

(
s

s+1

) (
1

s+β

)

1 +
(

s
s+1

) (
1

s+β

)

92

=
s

(s + 1)(s + β) + s

=
s

s2 + 2s + β(s + 1)

=

(
s

s2+2s

)

1 + β
(

s+1
s2+2s

)

(
1

s+2

)

1 + β
(

s+1
s(s+2)

)

Hence the equation we need is

1 + β

[
s + 1

s(s + 2)

]
= 0

and

G(s) =
s + 1

s(s + 2)

11.2 Examples

In the following sections we will determine the root locus plot for the following functions:

G1(s) =
1

(s + 1)(s + 2)

G2(s) =
1

(s + 1)(s + 2)(s + 3)

G3(s) =
1

(s + 1)(s + 2)(s + 3)(s + 4)

G4(s) =
(s + 2)

(s + 1)(s + 3)

G5(s) =
(s + 2)

(s + 1)(s + 3)(s + 4)

G6(s) =
(s + 2)(s + 3)

(s + 1)(s + 4)

G7(s) =
(s + 3)(s + 4)

(s + 1)(s + 2)

G8(s) =
(s + 2)

(s + 1)(s + 3)(s2 + 2s + 2)

G9(s) =
(s + 2)(s2 + 5s + 10.25)

(s + 1)(s + 3)(s + 4)

G10(s) =
1

s2 + 2s + 2

G11(s) =
1

s(s2 + 2s + 2)

93

G12(s) =
s2 + 2s + 2

s2 + 5s + 10

As you try to sketch a root locus plot, you should go through the following steps in the order
in which they are presented. You do not need all of the steps for all root locus plots. Once all
poles have been paired with zeros you are done and there is no need to continue.In each case, we
will assume the feedback configuration shown in Figure 33.

R(s)
- Gpf

-±°
²¯

- Gc(s) - Gp(s) -
Y (s)

6

+-

Figure 33: Assumed feedback configuration for root locus analysis in this chapter.

11.3 Loci Branches

Let’s consider the expression in standard root locus form

1 + kG(s) = 0

where k is the parameter free to vary. Let’s break up the product G(s) into numerator and
denominator polynomials

G(s) =
n(s)

d(s)

We can then rewrite our first expression as

d(s) + kn(s) = 0

Now when k = 0, this expression is true only if d(s) = 0, i.e., we are at the poles of G(s). As
k →∞, we need to have n(s) = 0, i.e. we are at the zeros of G(s). Hence our first rule can be
summarized as follows:

The root locus starts (k = 0) at the poles of G(s) and ends on the zeros of G(s).

There are a few basic points we need to make to clarify this rule and understand it’s application:

• It is important to note that each pole of G(s) must end at a zero of G(s). Thus for each
pole of G(s) that a branch of the root locus begins at, we must determine the location of
the corresponding zero where it will arrive as k →∞. Once we have “paired” a pole with
a zero we are done with them both.

94

• Since we are dealing with real systems, all of our transfer functions will have real coeffi-
cients. Thus all of the poles and zeros of our system will either be purely real or occur
in complex conjugate pairs. This implies that the root locus plot will symmetric about the
real axis.

• There is usually some confusion here about poles and zeros. The root locus is a plot of
how the poles of the closed loop system vary as a parameter is varied. However, to
construct the root locus, we need to use the poles and zeros of G(s). However, the poles
of G(s) are not the poles of the closed loop system.

11.4 Real Axis Segments

Before we look anywhere else, we always look along the real axis for points on the root locus.
To determine if there are any parts of the real axis on the root locus we use the following rule

The root locus includes all points along the real axis to the left of an odd number of poles plus
zeros of G(s).

This is the starting point for all root locus construction. If, after identifying all segments of the
real axis on the root locus, each pole is matched to a zero by a segment of the root locus, we
are done. Note that there may be zeros at infinity. Figures 34, 35, and 36 display the real axis
segments of the root locus for twelve different transfer functions, G1(s)−G12(s).

At this point, let’s examine theses root locus plots to see if we are done. To determine if
you are done, you need to be sure that every pole is matched to a zero and the root locus is
symmetric about the real axis. It is acceptable for a zero (or a pole) to be at infinity, as long as
you know where at infinity it is, such as along the real axis.

At this point, G4(s) and G6(s) are the only two completed root locus plots. In G4(s) the
pole at -3 is paired with a zero at infinity (along the real axis). In G6(s) the pole at -1 is paired
with the zero at -2, and the pole at -4 is paired with the zero at -3.

Before we go on to the next two rules, we need to see if we can do anything to complete any
more of the root locus plots. In this case we can also complete the plots for G7(s), G9(s), and
G12(s). How do we know this? In each one of these plots there are two zeros and two poles that
are unpaired. We now need to pair them up. We cannot have any more parts of the root locus
on the real axis, so all other segments must basically be off of the real axis. The basic thing to
keep in mind here is that the root locus must be symmetric about the real axis. Figure 37 shows
the completed root locus plots for these functions. Note that the segments we have added to
pair the poles with the zeros are symmetric about the real axis. Three questions naturally arise
here: (1) How do we know where the root locus leave the real axis? (2) At what angle do the
new segments leave the real axis or poles? and (3) At what angle do they arrive at the zeros?
While there are rules for computing these, we will not pursue them in this course.

We cannot complete the remaining root locus plots because there are not enough “finite”
zeros to pair with each pole. Hence these poles must pair with zeros at “infinity”. However,
since we are dealing with a two dimensional coordinate system, we need to figure out where (in
terms of direction) this infinity is. This brings us to the next two rules, which are used as a
pair.

95

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis

Im
ag

in
ar

y
A

xi
s

G1(s) = 1
(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

G2(s) = 1
(s+1)(s+2)(s+3)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

G3(s) = 1
(s+1)(s+2)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

Real Axis

Im
ag

in
ar

y
A

xi
s

G4(s) = (s+2)
(s+1)(s+3)

Figure 34: Root locus real-axis segments for G1(s)−G4(s).

96

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis
Im

ag
in

ar
y

A
xi

s

G5(s) = (s+2)
(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoox

Real Axis

Im
ag

in
ar

y
A

xi
s

G6(s) = (s+2)(s+3)
(s+1)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxoo

Real Axis

Im
ag

in
ar

y
A

xi
s

G7(s) = (s+3)(s+4)
(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G8(s) = (s+2)
(s+1)(s+3)(s2+2s+2)

Figure 35: Root locus real-axis segments for G5(s)−G8(s)

97

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

o

o

Real Axis
Im

ag
in

ar
y

A
xi

s

G9(s) = (s+2)(s2+5s+10.25)
(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G10(s) = 1
s2+2s+2

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G11(s) = 1
s(s2+2s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

o

o

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G12(s) = s2+2s+2
s2+5s+10

Figure 36: Root locus real-axis segments for G9(s)−G12(s).

98

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxoo

Real Axis

Im
ag

in
ar

y
A

xi
s

G7(s) = (s+3)(s+4)
(s+1)(s+2)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

o

o

Real Axis

Im
ag

in
ar

y
A

xi
s

G9(s) = (s+2)(s2+5s+10.25)
(s+1)(s+3)(s+4)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

o

o

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

G12(s) = s2+2s+2
s2+5s+10.25)

Figure 37: Completed root locus plots for G7(s), G9(s), G12(s).

99

11.5 Asymptotic Angles and Centroid of the Asymptotes

In order to locate the zeros at infinity, we need two things: a starting point and a direction. The
starting point is called the centroid of the asymptotes and the directions are the asymptotes. We
determine them using the following rules

The starting point on the real axis from which the asymptotic lines radiate is given by

σc =

∑
i pi −∑

j zj

n−m

where pi is the ith pole of G(s), zj is the jth zero of G(s), n is the number of poles of G(s) and
m is the number of zeros of G(s).

As k →∞, the branches of the locus become asymptotic to straight lines with angles

θ =
180o + i360o

n−m
, i = 0,±1,±2, ...

until all (n−m) angles not differing by multiples of 360o are obtained. n is the number of poles
of G(s) and m is the number of zeros of G(s).

Note that in order to determine how many angles to look for, we first utilize the fact that the
root locus must be symmetric about the real axis, thus if +45o is one angle , we must also have
−45o. Secondly, once we have found as many directions as unpaired poles we can stop since we
then know where their pairs are. We will now go through the remaining Gi(s) using these rules
to complete the root locus plots.

G1(s) First we determine the centroid of the asymptotes, σc. There are two poles, one at -1 and
one at -2, and there are no zeros. Hence n = 2 and m = 0. To determine σc,

σc =
[(−1) + (−2)]

2− 0
= −3

2

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

2− 0
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 38 shows both the real axis segment
and the asymptotes for G1(s) and then the completed root locus. Again, we don’t know where
the root locus leaves the real axis without more analysis, but you should know that it leaves the
real axis and is symmetric.

G2(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at -1,
one at -2, and one at -3, and there are no zeros. Hence n = 3 and m = 0. To determine σc,

σc =
[(−1) + (−2) + (−3)]

3− 0
= −2

100

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot

Figure 38: Real axis segment with asymptotes and completed root locus plots for G1(s) =
1

(s+1)(s+2)
. The centroid of the asymptotes is at σc = −3/2 and the angles of the asymptotes are

± 90 degrees.

101

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 0
= 60o

θ(i = 1) =
180o + 360o

3
= 180o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 39 shows both the real axis
segment and the asymptotes for G2(s) and then the completed root locus. Again, we don’t know
where the root locus leaves the real axis without more analysis, but you should know that it
leaves the real axis and is symmetric.

G3(s) First we determine the centroid of the asymptotes, σc. There are four poles, one at -1, one
at -2, one at -3, and one at -4, and there are no zeros. Hence n = 4 and m = 0. To determine
σc,

σc =
[(−1) + (−2) + (−3) + (−4)]

4− 0
= −2.5

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

4− 0
= 45o

θ(i = 1) =
180o + 360o

4
= 135o

Since the root locus is symmetric, we know we must also have −45o and −135o. We are looking
for zeros for four poles and we have four angles, so we are done. Figure 40 shows both the real
axis segment and the asymptotes for G3(s) and then the completed root locus. Again, we don’t
know where the root locus leaves the real axis without more analysis, but you should know that
it leaves the real axis and is symmetric.

G5(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at -1,
one at -3, and one at -4, and one zero at -2. Hence n = 3 and m = 1. To determine σc,

σc =
[(−1) + (−3) + (−4)]− [(−2)]

3− 1
= −3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 1
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 41 shows both the real axis segment
and the asymptotes for G5(s) and then the completed root locus. Again, we don’t know where
the root locus leaves the real axis without more analysis, but you should know that it leaves the

102

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 39: Real axis segment with asymptotes and completed root locus plots for G2(s) =
1

(s+1)(s+2)(s+3)
. The centroid of the asymptotes is at σc = −2 and the angles of the asymptotes

are 180 and ± 60 degrees.

103

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xxxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 40: Real axis segment with asymptotes and completed root locus plots for G3(s) =
1

(s+1)(s+2)(s+3)(s+4)
. The centroid of the asymptotes is at σc = −2.5 and the angles of the asymp-

totes are ± 45 and ± 135 degrees.

104

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xoxx

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 41: Real axis segment with asymptotes and completed root locus plots for G5(s) =
(s+2)

(s+1)(s+3)(s+4)
. The centroid of the asymptotes is at σc = −3 and the angles of the asymptotes

are ± 90 degrees.

105

real axis and is symmetric.

G8(s) First we determine the centroid of the asymptotes, σc. There are four poles, one at -1,
one at -3, one at -1+j, one at -1-j, and one zero at -2. Hence n = 4 and m = 1. To determine
σc,

σc =
[(−1) + (−3) + (−1 + j) + (−1− j)]− [(−2)]

4− 1
= −1.3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

4− 1
= 60o

θ(i = 1) =
180o + 360o

4− 1
= 180o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 42 shows both the real axis
segment and the asymptotes for G8(s) and then the completed root locus. Again, we don’t know
where the root locus leaves the real axis without more analysis, but you should know that it
leaves the real axis and is symmetric.

G10(s) First we determine the centroid of the asymptotes, σc. There are two poles, one at -1+j,
one at -1-j, and no zeros. Hence n = 2 and m = 0. To determine σc,

σc =
[(−1 + j) + (−1− j)]

2− 0
= −1

Hence the asymptotes radiate from this point. Next we compute the asymptotes angles

θ(i = 0) =
180o

2− 0
= 90o

Since the root locus is symmetric, we know we must also have −90o. We are looking for zeros for
two poles and we have two angles, so we are done. Figure 43 shows both the real axis segment
and the asymptotes for G10(s) and then the completed root locus.

G11(s) First we determine the centroid of the asymptotes, σc. There are three poles, one at
-1+j, one at -1-j, one at 0, and no zeros. Hence n = 3 and m = 0. To determine σc,

σc =
[(−1 + j) + (−1− j) + (0)]

3− 0
= −2

3

Hence the asymptotes radiate from this point. Next we compute the asymptote angles

θ(i = 0) =
180o

3− 0
= 60o

θ(i = 1) =
180o + 360o

3− 0
= 90o

Since the root locus is symmetric, we know we must also have −60o. We are looking for zeros
for three poles and we have three angles, so we are done. Figure 44 shows both the real axis
segment and the asymptotes for G11(s) and then the completed root locus.

106

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−3

−2

−1

0

1

2

3

xox

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 42: Real axis segment with asymptotes and completed root locus plots for G8(s) =
(s+2)

(s+1)(s+3)(s2+2s+2)
. The centroid of the asymptotes is at σc = −1.3 and the angles of the asymp-

totes are 180 and ± 60 degrees.

107

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−3

−2

−1

0

1

2

3

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 43: Real axis segment with asymptotes and completed root locus plots for G10(s) =
1

s2+2s+2
. The centroid of the asymptotes is at σc = −1 and the angles of the asymptotes are ±

90 degrees.

108

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Real axis segment and the asymptotes

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

x

x

Real Axis

Im
ag

in
ar

y
A

xi
s

Completed root locus plot (with the asymptotes)

Figure 44: Real axis segment with asymptotes and completed root locus plots for G11(s) =
1

s(s2+2s+2)
. The centroid of the asymptotes is at σc = −2/3 and the angles of the asymptotes are

90 and ± 60 degrees.

109

11.6 Common Industrial Controller Types

In addition to the types of controllers we have already discussed using the model matching
methods, we will now introduce types of controllers that are very commonly used in industrial
applications. For each of these types of controllers, we assume the controller is the ratio of the
signal into the plant U(s) and the error signal E(s), hence

Gc(s) =
U(s)

E(s)

or

U(s) = Gc(s)E(s)

Porportional (P) Control In a proportional controller, the output of the controller is di-
rectly proportional to the error signal, or u(t) = kpe(t). Here kp is the proportional gain, and
Gc(s) = kp. For this type of controller, the output tends to oscillate alot.

Integral (I) Control In an integral controller, the output of the controller is proportional to
the integral of the error signal, or

u(t) = ki

∫ t

e(λ)dλ

This means

Gc(s) =
ki

s

Unless the plant has a zero at the origin, this type of controller makes the system a type one
system and, if the system is stable, the steady state error for a step input will be zero. For plants
with complex conjugate poles near the jω axis, the system will likely become unstable except
for small values of gain ki. This type of controller also tends to be slow, which can be a problem.

Derivative (D) Control In a derivative controller, the output of the controller is proportional
to the derivative of the error signal, or

u(t) = kd
d

dt
e(t)

This means

Gc(s) = kds

A derivative controller anticipates the direction of the error signal since it is proportional to the
slope, and tends to be very fast. However, it is very difficult to compute derivatives for real
systems, so this type of controller is very seldom used alone. In order to filter out noise and
smooth the signal before the derivative is computed this controller is often used in combination
with a lowpass filter.

110

Proportional+Integral (PI) Controllers For this type of controller, we combine both the
proportional and integral types of controllers, so

u(t) = kpe(t) + ki

∫ t

e(λ)dλ

or

Gc(s) = kp +
ki

s

This can be written in the form

Gc(s) =
k(s + z)

s

Hence a PI controller always has a pole at the origin, while both the location of the zero −z
and gain k can be varied to meet design requirements.

Proportional+Derivative (PD) Controllers For this type of controller, we combine both
the proportional and derivative types of controllers, so

u(t) = kpe(t) + kd
d

dt
e(t)

or

Gc(s) = kp + kds

This can be written in the form

Gc(s) = k(s + z)

The location of the zero −z and gain k can be varied to meet design requirements.

Proportional+Integral+Derivative (PID) Controllers For this type of controller, we com-
bine both the proportional, integral, and derivative types of controllers, so

u(t) = kpe(t) + ki

∫ t

e(λ)dλ + kd
d

dt
e(t)

or

Gc(s) = kp +
ki

s
+ kds

This can be written in the form

Gc(s) =
k(s + z1)(s + z2)

s

Hence a PID controller always has a pole at the origin, while both the location of the zeros −z1

and −z2 and gain k can be varied to meet design requirements. Note that we can either have

111

real zeros or complex conjugate zeros with this type of controller.

Lead Controllers For this type of controller has the transfer function

Gc(s) =
k(s + z)

(s + p)

where p is larger than z3. Note that for this type of controller we have the freedom to choose
the gain k, the zero −z, and the pole −p to meet design requirements.

Special Note. For all of these controllers, we want both the poles and zeros in the left half plane.
This means that z is a positive number (so the zero is at −z) and p is a positive number (so the
pole is at −p.)

11.7 Controller and Design Constraint Examples

Example 3. Assume we have the plant

Gp(s) =
2

s2 + 2s + 10

and we want to design a controller so that

• the system is stable

• the steady state error for a unit step is less than 0.2

• the settling time is less than 2 seconds

We will assume we are going to use the basic control structure shown in Figure 33 at the
beginning of the chapter. In order for the system to remain stable the poles of the closed loop
system must be in the left half plane. In order to meet the settling time requirement, we need

Ts =
4

σ
≤ 2

or σ ≥ 2. Hence the real parts of the poles must be less than -2 (or have magnitude σ greater
than 2). On our root locus plots we will denote this location by a vertical dotted line, which we
will need to be sure to be to the left of in order to meet the settling time constraints. Since we
are using a prefilter, we will be able to meet the steady state error requirements for any stable
system. However, the prefilter is outside the feedback loop, so we would like to avoid this if possi-
ble. We will next examine each of the possible controller types to see if it meets the requirements.

Proportional (P) Controller. For this controller, G(s) = 2
s2+2s+10

. First we compute the
centroid of the asymptotes and the asymptote angles:

θ =
180o

2
= 90o

σc =
[(−1− 3j) + (−1 + 3j)]

2
= −1

3If p is less than z then this is a lag controller, which tends to slow the system down. We will discuss lag
controllers in a subsequent chapter.

112

Figure 45: Root locus plot for Gp(s) = 2
s2+2s+10

with the proportional (P) controller. To match
the settling time all poles must be to the left of -2.

The root locus for the system with the proportional controller is shown in Figure 45, along with
the heavy line at -2, which divides the plane into the pole locations that will meet the settling
time requirement and those that will not. As this figure shows, the system will remain stable
for all values of k4, but will never meet the settling time requirement since the poles are always
to the right of -2. To meet the steady state error requirement, we find

Kp =
k

5

ess =
1

1 + Kp

≤ 1

5

1 + Kp = 1 +
k

5
≥ 5

k ≥ 20

Hence to meet the steady state error constraint we need k ≥ 20. As an alternative, we could us
a prefilter with gain Gpf = k+5

k
for zero steady state error. However the prefiler is outside the

feedback loop.

4Here k = kp.

113

Figure 46: Root locus plot for Gp(s) = 2
s2+2s+10

with the integral (I) controller. To match the
settling time all poles must be to the left of -2.

Integral (I) Controller. For this controller, G(s) = 2
s(s2+2s+10)

. First we compute the centroid
of the asymptotes and the asymptote angles:

θ =
180o

3
= 60o

σc =
[(−1− 3j) + (−1 + 3j) + (0)]

3
= −2

3

The root locus for the system with the integral controller is shown in Figure 46, along with
a line at -2, which divides the plane into the pole locations that will meet the settling time
requirement and those that will not. As this figure shows, the system will not remain stable
for all values of k5, at some value of k some of the poles will be in the right half plane. If k is
chosen so the system is stable, the steady state error will be zero. The system will never meet
the settling time requirement since two of the poles are always to the right of -2. (In order to
meet the settling time requirement all of the poles must be to the left of -2.)

Proportional+Integral (PI) Controller. For this controller, G(s) = 2(s+z)
s(s2+2s+10)

.First we
compute the centroid of the asymptotes and the asymptote angles:

θ =
180o

3− 2
= 90o

5Here k = ki.

114

σc =
[(−1− 3j) + (−1 + 3j) + (0)]− [−z]

2
=

z − 2

2
, z ≥ 0.

Here the centroid of the asymptotes depends on where we locate the zero of the system. Fig-
ure 47 displays the root locus plot for z = 3 and z = 0.5, as well as the constraint region. We
always want z ≥ 0 and we need all poles to the left of -2 to meet the settling time constraint.
The best we can do for the complex conjugate poles is to set z to a very small number. If z = 0
it cancels the pole at the origin and the root locus looks like that of the proportional controller.
For the zero at -0.5 the system will remain stable for all k and will have a steady state error or
zero. For the pole at -3 the system will remain stable only for a range of k, but it will have a
steady state error of zero for a unit step so long as the system is stable.

Proportional+Derivative (PD) Controller For this controller, G(s) = 2(s+z)
(s2+2s+10)

. For this
controller, we do not need to compute the centroid, just think a bit. Once we put the zero on
the real axis, the entire real axis to the left of this point will be on the root locus. The two poles
will come down to the real axis to pair with the zeros. If we choose the zero to be in the left half
plane, the system will be stable for all values of k. To be absolutely clear that we can choose
poles that meet the settling time constraint, we should be sure z ≥ 2, so both poles must be to
the left of -2. It may be possible without this constraint, but this will guarantee it. Figure 48
shows the root locus for this system with z = 1, z = 2, and z = 3. Not that for z = 1, for small
values of k the system does not meet the settling time constraint, then for a range of k it does
meet the settling time constraint, and then once k becomes larger than some critical value one
of the closed loop poles leaves the critical region (to the left of -2) on its way to the zero and
the system no longer meets the settling time criteria. For both z = 2 and z = 4, the system
does not meet the settling time criteria until k is larger than some critical value, then for all k
larger than this critical value the system meets the settling time constraint. To meet the steady
state error constraint we need

ess =
1

1 + Kp

≤ 1

5

1 + Kp = 1 +
kz

5
≥ 5

or

kz ≥ 20

If we cannot meet this condition, we can use a prefilter with gain Gpf = kz+5
kz

for a steady state
error, but the prefilter is outside the feedback loop.

Proportional+Integral+Derivative (PID) Controller. For this controller, G(s) = 2(s+z1)(s+z2)
s(s2+2s+10)

.
For this controller, we do not need to compute the centroid, just think a bit. First of all, both
zeros are in the left half plane the system will be stable for all k, and the steady state error will
also be 0. We then have two cases to consider: (1) both zeros are real, and (2) the zeros are
complex conjugates.

Real Zeros If we put both zeros on the real axis, and make sure both of them are to the left of -2,
then we can be sure that for some value of k all poles will be to the left of -2. Figure 49 displays

115

Figure 47: Root locus plots for Gp(s) = 2
s2+2s+10

with the proportional+integral (PI) controllers
with the controller zero at -3 (top) and -0.5 (bottom). To match the settling time all poles must
be to the left of -2.

116

Figure 48: Root locus plots for Gp(s) = 2
s2+2s+10

with the proportional+derivative (PD) con-
trollers with the controller zero at -1 (top), -2 (middle), and -4 (bottom). To match the settling
time all poles must be to the left of -2.

117

three different examples of PID controllers with real zeros. For the choice of zero locations in
the top panel, the settling time condition will never be met. For the choice of zeros in the middle
and bottom panels, the settling time condition will be met if k is sufficiently large.

Complex Conjugate Zeros If the zeros are complex conjugates, we need to be sure the real part
of the zero is to the left of -4, then we can be sure there is some value for k so that all of the
poles will be to the left of -2. Figure 50 displays three different examples of PID controllers
with complex conjugate zeros. For the choice of real zeros shown in the top two panels, the
settling time condition will never be net. For the choice of zero locations in the bottom panel,
the settling time conditions will be met for k sufficiently large.

Lead Controller. For this controller, G(s) = 2(s+z)
(s+p)(s2+2s+10)

. First we compute the centroid of
the asymptotes and the asymptote angles:

θ =
180o

2
= 90o

σc =
[(−1− 3j) + (−1 + 3j) + (−p)]− [(−z)]

2
=
−2− p + z

2

=
−2− l

2

where l = p − z, the difference between the pole and the zero of the controller. For positive
l the system will be stable for all values of k. In order to meet the settling time requirement,
we should have l > 2. Figure 51 displays the root locus for l = 2 for various combinations of z
and p. Figure 52 displays the root locus for l = 4 (top), l = 6 (middle), and l = 18 (bottom)
for z fixed at z = 3. Clearly as l increases, the asymptotes move to the left. This is what we
usually use a lead controller for, to pull the poles of the closed loop system to the left. Finally,
Figure 53 displays a common phenomena when using a lead controller. Here we have l = 6 and
the asymptotes are at -4. However, as k increases the complex conjugate poles move to the left
(good), however, the pole on the real axis moves to the right (bad). It may not be possible with
this configuration to find a value (or range of values) of k so the system meets the settling time
requirements.

In order to meet the steady state error requirements we need

ess =
1

1 + Kp

1 + Kp = 1 +
kz

5p
≤ 1

5

or

kz

p
≥ 20

If we cannot meet this condition, we can use a prefilter if we need to. A prefilter with Gpf = kz+5p
kz

will produce a steady state error of zero, but it is outside the feedback loop.

118

Figure 49: Root locus plots for Gp(s) = 2
s2+2s+10

with proportional+integral+derivative (PID)
controllers with real zeros. To match the settling time all poles must be to the left of -2.

119

Figure 50: Root locus plots for Gp(s) = 2
s2+2s+10

with proportional+integral+derivative (PID)
controllers with complex conjugate zeros. To match the settling time all poles must be to the
left of -2.

120

Figure 51: Root locus plots for Gp(s) = 2
s2+2s+10

with lead controllers for l = 2 and asymptote
σc = −2. To match the settling time all poles must be to the left of -2.

121

Figure 52: Root locus plots for Gp(s) = 2
s2+2s+10

with lead controllers for l = 4 and asymptote
σc = −3 (top), l = 6 and asymptote σc = −4 (middle), and l = 18 and asymptote σc = −10
(bottom). To match the settling time all poles must be to the left of -2.

122

Figure 53: Root locus plot for Gp(s) = 2
s2+2s+10

with the lead controller for l = 6 and asymptote
σc = −4. As the complex conjugate poles move to the left, the pole on the real axis moves to
the right. It may not be possible to find a value (or range of values) for k to meet the settling
time requirements.To match the settling time all poles must be to the left of -2.

123

Example 4. Assume we have the plant

Gp(s) =
2

s2 + 3s + 2

and we want to design a controller so that

• the system is stable

• the steady state error is less than 0.2 (for a unit step)

• the settling time is less than 1.5 seconds

• the percent overshoot is less than 20%

We will assume we are going to use the basic control structure shown in Figure 33 at the
beginning of the chapter. In order for the system to remain stable the poles of the closed loop
system must be in the left half plane. In order to meet the settling time requirement, we need

Ts =
4

σ
≤ 1.5

or σ ≥ 2.67. Hence the real parts of the poles must be less than -2.67 (or have magnitude σ
greater than 2.67). On our root locus plots we will denote this location by a vertical dotted line,
which we will need to be sure to be to the left of in order to meet the settling time constraints. In
order to meet the percent overshoot constraint, we need the poles within a wedge of 62.8o from
the negative real axis. On our root locus plot we will again denote this wedge by a dashed line.
To meet both settling time and percent overshoot constraints we must have part of the root locus
in the region of overlap. In addition, we must remember that, in particular, the percent overshoot
region is an approximation based on an ideal second order system. Since we are using a prefilter,
we will be able to meet the steady state error requirements for any stable system. We will next
examine each of the possible controller types to see if it meets the requirements. This exam-
ple will not be done in the detail of the last example, since I am really getting sick of writing this.

Proportional (P) Controller. For this controller, G(s) = 2
s2+3s+2

. The root locus for the
system with the proportional controller is shown in Figure 54. As this figure shows, the system
will remain stable for all values of k6. It will never meet the settling time requirement since
the poles are always to the right of -2.67. It will meet the percent overshoot requirements until
k reaches a critical value, then for all values of k larger than this critical value the percent
overshoot requirement will not be met. The steady state error requirement can be met if k ≥ 4,
but for this value of k the system may not meet any other requirements.

Integral (I) Controller. For this controller, G(s) = 2
s(s2+3s+2)

. The root locus for the system
with the integral controller is shown in Figure 55. As this figure shows, the system will not
remain stable for all values of k7. For some value of k one set of poles crosses the jω axis and
the system will be unstable for all values of k larger than this. This system will never meet the

6Here k = kp.
7Here k = ki.

124

Figure 54: Root locus plot for Gp(s) = 2
s2+3s+2

with the proportional (P) controller. This system
will never meet the settling time criteria, but it will meet the percent overshoot criteria as long
as k is not too large.

125

Figure 55: Root locus plot for Gp(s) = 2
s2+3s+2

with the integral (I) controller. This system will
never meet the settling time criteria, but it will meet the percent overshoot criteria as long as
k is not too large. This system will become unstable for k sufficiently large.

settling time requirement since two of the three poles are always to the right of -2.67. It will
meet the percent overshoot requirements until k reaches a critical value, then for all values of k
larger than this critical value the percent overshoot requirement will not be met. If this system
is stable, the steady state error will be zero, since it is a type one system.

Proportional+Integral (PI) Controller. For this controller, G(s) = 2(s+z)
s(s2+3s+2)

. The root
locus for the system with the three PI controllers is shown in Figure 56. This figure shows three
different values of the zero location in this controller: z = 0.5 (top pannel), z = 1.5 (middle
pannel), and z = 4 (bottom pannel). As this figure shows, none of the configurations (choices of
z) will meet the settling time criteria. All of the configurations will meet the percent overshoot
criteria if the value of k is not too large. The third configuration will become unstable for
sufficiently large k. If the value of k is chosen so the system is stable, the steady state error
criteria will be met since this is a type one system.

Proportional+Derivative (PD) Controller. For this controller, G(s) = 2(s+z)
s2+3s+2

. The root
locus for the system with three PD controller is shown in Figure 57. This figure shows three
different values of the zero location in this controller: z = 0.5 (top panel), z = 1.5 (middle
panel), and z = 3 (bottom panel). As this figure shows, only the last configuration (choices of
z) will meet the settling time criteria for a sufficiently large value of k. All of the configurations

126

Figure 56: Root locus plot for Gp(s) = 2
s2+3s+2

with three proportional+integral (PI) controllers.
None of these systems will ever meet the settling time criteria. All three will meet the percent
overshoot criteria if k is small enough. The third system will become unstable for k sufficiently
large.

127

will meet the percent overshoot criteria for all values of k. In order to meet the steady state
error requirement, we need kz ≥ 4.

Proportional+Integral+Derivative (PID) Controller. For this controller, G(s) = 2(s+z1)(s+z2)
s(s2+3s+2)

.

For this controller, we have two cases to consider: (1) both zeros are real, and (2) the zeros are
complex conjugates.

Real Zeros Figure 58 and 59 displays different examples of PID controllers with real zeros. The
first two systems in Figure 59 show poor choices for the locations of the controller zeros.The
results in the second panel of Figure 59 shows that for some configurations, it is possible for the
system to become unstable if k is chosen incorrectly.

Complex Conjugate Zeros Figure 60 and 61 displays different examples of PID controllers with
complex conjugate zeros. The first two systems in Figure 60 show poor choices for the locations
of the controller zeros. The bottom panel shows an acceptable choice for meeting both require-
ments, since for a sufficiently large k all poles will be in the acceptable region. The results in
the second panel of Figure 61 shows that for some configurations, it is possible for the system
to become unstable if k is chosen incorrectly.

Lead Controller. For this controller, G(s) = 2(s+z)
(s+p)(s2+3s+2)

. For this case, it is worthwhile to
examine the location of the centroid of the asymptotes to determine how far apart we need the
pole and the zero to be.

θ =
180

2
= 90

σc =
[(−1) + (−2) + (−p)]− [(−z)]

2
=
−3− p + z

2

=
−3− l

2

where l = p− z, the difference between the pole and the zero of the controller. In order to meet
the settling time constraint, we will need

σc =
−3− l

2
≤ −2.67

or

l ≥ 2.34

The root locus plots for the system with various lead controllers are shown in Figures 62 and 63.
Figure 62 shows root locus plots for l = 3 and three different choices of pole and zero locations.
Although each one of these systems has the same value of l = 3, so one set of asymptotes meets
the settling criteria, unless care is taken the system will not meet the settling time criteria. The
first two choices in this figure are clearly stupid choices for the location of the controller pole
and the controller zero! In this figure, only the third choice will produce a system that meets
all of the criteria for k less than a critical value. If k becomes too large, the percent overshoot
criteria will not be met by any of these systems. Figure 63 shows two more root locus plots for
l = 6 and l = 9, keeping z = 3. These plots demonstrate again how the lead controller bends
the root locus to the left. In order to meet the steady state error requirement, we need kz

p
≥ 6.

128

Figure 57: Root locus plots for Gp(s) = 2
s2+3s+2

with three proportional+derivative (PD) con-
trollers. Only the third system meets the settling time criteria (for k large enough). All three
will meet the percent overshoot criteria.

129

Figure 58: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with real. The systems in the top two panels demonstrate bad choices for the location
of the controller zeros.

130

Figure 59: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with real zeros.

131

Figure 60: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with complex conjugate zeros. The systems in the top two panels demonstrate bad
choices for the location of the controller zeros.

132

Figure 61: Root locus plots for Gp(s) = 2
s2+3s+2

with proportional+integral+derivative (PID)
controllers with complex conjugate zeros.

133

Figure 62: Root locus plots for Gp(s) = 2
s2+3s+2

with lead controllers. Here l = 3 for all three
controllers. However, only the third system is capable of meeting both the settling time and
percent overshoot criteria. If k becomes too large in these systems the percent overshoot criteria
will not be met.

134

Figure 63: Root locus plots for Gp(s) = 2
s2+3s+2

with lead controllers. Here l = 6 (top panel)
ad l = 9 (bottom panel). If k becomes too large in these systems the percent overshoot criteria
will not be met.

135

11.8 Seemingly Odd Root Locus Behavior

Up to this point, you have been seeing only “normal” root locus behavior, and these are the
types of plots you should be able to produce by hand sketches. However, there are times when
one can get some fairly odd looking shapes, and you should be aware that these are possible.
None of these root locus plots violate any of the rules you have been given, and if we had gone
over the rules for determining the locations the root locus leave the real axis and the location
where the root locus enters the real axis (“break-in/break-out” points) these root loci would not
seem so strange.

To begin with, let’s continue with the lead controller from Example 3. As we showed before,
as the distance between the pole and the zero, l = p− z, becomes larger, the asymptotes of the
complex poles move to the right. However, at some point we will begin to see some of this odd
behavior. Figure 64 displays this behavior as l is varied from 23 to 25.

Figure 65 displays strange behavior for PID controllers for Example 3 as the imaginary parts
of the zeros move closer to the real axis. Again, none of our rules are violated, but this is
unexpected behavior.

136

Figure 64: Root locus plot for Gp(s) = 2
s2+2s+10

with the lead controller for l = 23, 24, and 25.
This graph exemplifies some of the possible root locus behavior we have not seen yet. To match
the settling time all poles must be to the left of -2.

137

Figure 65: Root locus plot for Gp(s) = 2
s2+2s+10

with the pid controller as the imaginary part
of the zeros move closer to the real axis. This graph exemplifies some of the possible root locus
behavior we have not seen yet. To match the settling time all poles must be to the left of -2.

138

12 Pole Placement By Matching Coefficients: Diophan-

tine Equations

An alternative approach to controller design is to use a controller Gc(s) to put the closed-loop
poles of a system in desired locations. We will start this section with an example, then explain
the conditions under which this approach will work, and then do some more examples.

Consider the following unity feedback system

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

with plant

Gp(s) =
s + 1

s2 + s + 1

Assume we want to place the closed-loop poles at −2 ± j and -8, so we want the denominator
of the closed-loop system to be

D0(s) = (s + 2 + j)(s + 2− j)(s + 8)

= s3 + 12s2 + 37s + 40

Let’s assume the controller has the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (so the controller is proper). Now, the closed-loop transfer function G0(s) is given
by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=

(
B0+B1s
A0+A1s

) (
s+1

s2+s+1

)

1 +
(

B0+B1s
A0+A1s

) (
s+1

s2+s+1

)

=
(B0 + B1s)(s + 1)

(A0 + A1s)(s2 + s + 1) + (B0 + B1s)(s + 1)

Since we know where we want the closed-loop poles, we equate denominators:

D0(s) = s3 + 12s2 + 37s + 40 = (A0 + A1s)(s
2 + s + 1) + (B0 + B1s)(s + 1)

139

and then equate powers of s:

s3 : 1 = A1

s2 : 12 = A1 + A0 + B1

s1 : 37 = A0 + A1 + B0 + B1

s0 : 40 = A0 + B0

We then have the system of equations

0 0 1 0
1 0 1 1
1 1 1 1
1 1 0 0

A0

B0

A1

B1

 =

1
12
37
40

The solution to this system of equations is A0 = 15, B0 = 25, A1 = 1, and B1 = −4. The
controller is then

Gc(s) =
25− 4s

15 + s

and the closed-loop transfer function is

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=

(
25−4s
15+s

) (
s+1

s2+s+1

)

1 +
(

25−4s
15+s

) (
s+1

s2+s+1

)

=
(25− 4s)(s + 1)

(15 + s)(s2 + s + 1) + (25− 4s)(s + 1)

=
(25− 4s)(s + 1)

s3 + 12s2 + 39s + 40

We have achieved the desired closed-loop poles. However, we have introduced a new zero into
the system at 25

4
. As you will see, this is the major drawback to this kind of controller. While

we can force the closed-loop poles to be anything we want, we will be introducing zeros into the
system. If these zeros are acceptable, then we are done. If they are not acceptable, then we need
to try and do something. One option is to try changing where we want the closed-loop poles
to be. A second option is to try and eliminate any introduced zeros with a dynamic prefilter,
however we cannot cancel zeros in the right half place, since we would need our prefilter to have
poles in the right half plane. An alternative is to try a different type of controller. For this
example, the steady state error for a unit step input is ep = 1− 5

8
= 3

8
. One method of obtaining

a steady state error of zero for a unit step input is with a prefilter (with gain 8
5
). A better way

is to design the controller so that the resulting system is a type 1 system. We will show how to
do the latter in a subsequent section.

12.1 Theoretical Background

The results we need to know are stated in the following theorem. There are two parts to the
theorem. The first part states the results for a strictly proper plant, while the second part states

140

the results for a plant where the numerator and denominator polynomials have the same degree.
The important information from the theorem is knowing the minimum order of the required
controller m and the order of the closed-loop transfer function n + m.

Theorem Strictly Proper Plant Assume we have a strictly proper nth order plant transfer func-
tion, Gp(s) = N(s)/D(s). Since Gp(s) is strictly proper we have the degree of N(s) < the degree
of D(s). Since Gp(s) is nth order the degree of D(s) = n. Assume also that N(s) and D(s)
have no common factors. Then for any polynomial D0(s) of degree n + m a proper controller
Gc(s) = B(s)/A(s) of degree m exists so that the characteristic equation of the resulting closed-
loop system is equal to D0(s). If m = n − 1, the controller is unique. If m ≥ n, the controller
is not unique and some of the coefficients can be used to achieve other design objectives.

Theorem Special case: degree N(s) = degree D(s). Assume we have a proper nth order plant
transfer function, Gp(s) = N(s)/D(s), where the degree of D(s) = degree N(s) = n. Assume
also that N(s) and D(s) have no common factors. Then for any polynomial D0(s) of degree
n + m a proper controller Gc(s) = B(s)/A(s) of degree m exists so that the characteristic equa-
tion of the resulting closed-loop system is equal to D0(s). If m = n, and the controller is chosen
to be strictly proper, the controller is unique. If m ≥ n + 1, the controller is not unique and
some of the coefficients can be used to achieve other design objectives.

How do we do this? For plant Gp(s) = N(s)/D(s), controller Gc(s) = B(s)/A(s), and desired
characteristic equation D0(s) we will have to solve the equation

A(s)D(s) + B(s)N(s) = D0(s)

This is called the Diophantine equation. We solve this equation by equating powers of s, setting
up a system of equations, and then solving. The closed-loop transfer function will be

G0(s) =
B(s)N(s)

D0(s)

where B(s) contains the zeros we have added to the system.

Example 1. Assume we are trying to control the plant

Gp(s) =
10

s2 + 1

Since n = 2 we need the order of the controller m ≥ n−1 or m ≥ 1. We’ll choose m = 1. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 3 poles. Let’s assume we want the
closed-loop poles to be at −10± 5j and -20. Then

D0(s) = (s + 10 + 5j)(s + 10− 5j)(s + 20)

= s3 + 40s2 + 525s + 2500

141

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)

(A0 + A1s)
(
s2 + 1

)
+ (B0 + B1s) (10) = s3 + 40s2 + 525s + 2500

Now we equate powers of s

s3 : 1 = A1

s2 : 40 = A0

s1 : 525 = A1 + 10B1

s0 : 2500 = A0 + 10B0

In this case we can solve directly to get A0 = 40, B0 = 246, A1 = 1 ad B1 = 52.4. Hence our
controller is

Gc(s) =
246 + 52.4s

40 + s

and the closed-loop transfer function is

G0(s) =
(246 + 52.4s)10

s3 + 40s2 + 525s + 2500

We have introduced a zero at -4.69. The steady state error for a step input is ess = 1−G0(0) =
0.016.

Example 2. Assume we are trying to control the plant

Gp(s) =
(s + 1)

s3 + 4s2 + 3s + 6

Since n = 3 we need the order of the controller m ≥ n−1 or m ≥ 2. We’ll choose m = 2. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s + B2s

2

A0 + A1s + A2s2

where A2 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 5 poles. Let’s assume we want all the
closed-loop poles to be at -5. Then

D0(s) = (s + 5)5

= s5 + 25s4 + 250s3 + 1250s2 + 3125s + 3125

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)(
A0 + A1s + A2s

2
) (

s3 + 4s2 + 3s + 6
)

+
(
B0 + B1s + B2s

2
)

(s + 1) = D0(s)

142

Now we equate powers of s

s5 : 1 = A2

s4 : 25 = A1 + 4A2

s3 : 250 = A0 + 4A1 + 3A2 + B2

s2 : 1250 = 4A0 + 3A1 + 6A2 + B1 + B2

s1 : 3125 = 3A0 + 6A1 + B0 + B1

s0 : 3125 = 6A0 + B0

Hence we have to solve the system of equations

0 0 1 0 0 0
0 1 4 0 0 0
1 4 3 0 0 1
4 3 6 0 1 1
3 6 0 1 1 0
6 0 0 1 0 0

A0

A1

A2

B0

B1

B2

=

1
25
250
1250
3125
3125

Solving this system we get A0 = 190.6, B0 = 1981.0, A1 = 21.0, B1 = 446.0, A2 = 1, and
B2 = −27.7. Hence our controller is

Gc(s) =
1981.0 + 446.0s− 27.7s2

190.6 + 21.0s + s2

and the closed-loop transfer function is

G0(s) =
(1981.0 + 446.0s− 27.7s2)(s + 1)

s5 + 25s4 + 250s3 + 1250s2 + 3125s + 3125

We have introduced two zeros at 19.7 and -3.62. The steady state error for a unit step input is
ess = 1 − G0(0) = 0.366, which is quite poor. In this case, we would probably use a prefilter
with amplitude 1

G0(0)
= 1.581.

12.2 Pole Placement with Robust Tracking

We would like to avoid the prefilter approach to achieving a steady state error of zero, since the
system may change over time. If we can make the plant-controller combination a type 1 system,
then the closed-loop system will have a steady state error of zero for a step input even if the
plant changes over time (or our model is not exact). To do this, we will insert an integrator in
the controller. To do this, we increase the degree of the controller we need by 1, and use the
extra parameter to create a type 1 system. To create the type one system, we will increase the
order of the controller by one and set A0 = 0.

Example 3. Assume we are trying to control the plant

Gp(s) =
3

s2 + 3s + 2

143

Since n = 2 we need the order of the controller m ≥ n−1 or m ≥ 1. We’ll choose m = 1. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 3 poles. Let’s assume we want the
closed-loop poles to be at −5± j and -20. Then

D0(s) = (s + 5 + j)(s + 5− j)(s + 20)

= s3 + 30s2 + 226s + 520

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)

(A0 + A1s)
(
s2 + 3s + 2

)
+ (B0 + B1s) (3) = s3 + 30s2 + 226s + 520

Now we equate powers of s

s3 : 1 = A1

s2 : 30 = A0 + 3A1

s1 : 226 = 3A0 + 2A1 + 3B1

s0 : 520 = 2A0 + 3B0

In this case, we can solve directly to get A0 = 27.00, B0 = 155.33, A1 = 1.00 ad B1 = 47.67.
Hence, our controller is

Gc(s) =
155.33 + 47.67s

27.00 + s

and the closed-loop transfer function is

G0(s) =
3(155.33 + 47.67s)

s3 + 30s2 + 226s + 520

We have introduced a zero at -3.26. The steady state error for a unit step input is ess =
1−G0(0) = 0.104.

Now let’s assume we want a steady state error of zero, but don’t want to use a prefilter. To do
this, we increase the order of the controller by one, (so m = 2) and, to be sure we have a type
one system, we set A0 = 0. Hence, we assume a controller of the form

Gc(s) =
B0 + B1s + B2s

2

A1s + A2s2

where A2 6= 0. We now need a characteristic polynomial with n+m = 4 roots, so there are four
closed-loop poles to assign. Let’s assume we want to keep the poles we have, and put the new
pole at -30. Hence, the closed-loop poles are at −5± j, -20, and -30. Then

D0(s) = (s + 5 + j)(s + 5− j)(s + 20)(s + 30)

= s4 + 60s3 + 1126s2 + 7300s + 15600

144

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)(
A1s + A2s

2
) (

s2 + 3s + 2
)

+
(
B0 + B1s + B2s

2
)

(3) = s4 + 60s3 + 1126s2 + 7300s + 15600

Now we equate powers of s

s4 : 1 = A2

s3 : 60 = A1 + 3A2

s2 : 1126 = 3A1 + 2A2 + 3B2

s1 : 7300 = 2A1 + 3B1

s0 : 15600 = 3B0

We can easily solve these equations to give B0 = 5200, A1 = 57.0, B1 = 2395.3, A2 = 1, and
B2 = 317.6.

Gc(s) =
5200 + 2395.3s + 317.7s2

57s + s2

and the closed-loop transfer function is

G0(s) =
3(5200 + 2395.3s + 317.7s2)

s4 + 60s3 + 1126s2 + 7300s + 15600

We have introduced zeros at -3.7 ±1.49j. Since we have a type one system, the steady state
error for a step input is zero.

12.3 Summary

We have shown that, by utilizing the Diophantine equations, we can place the closed-loop poles
wherever we want. In addition, by choosing the order of the controller larger than is necessary
to place the poles, we can also force the system to be a type 1 system (or even a type two
system). However, in utilizing this method, we introduce zeros into the system. The only way
to determine if the added zeros are detrimental to acceptable transient behavior is to simulate
the system. By appropriate choice of desired closed-loop poles, we can sometimes change the
locations of these zeros so that the system response is acceptable.

145

13 System Sensitivity

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. (This
type of sensitivity is important to study since we need to be able to determine how to design
a control system to reduce the sensitivity of the system to changes in the plant, since we often
have to estimate the plant and this estimation will contain some errors.) The other type of
sensitivity usually refers to how sensitive the system is to outside disturbances. Again, this is
important to understand so we can design a control system to reduce the effects of external
disturbances. Finally, it is important to understand that sensitivity is a function of frequency,
and you need to understand the range of frequencies you expect to be operating your system
under (i.e., the frequency content of the input signal). For example, a system may be very
sensitive to a parameter at frequencies near 100 Hz, but if your system is typically operating in
the 1-10 Hz range this sensitivity is not very important.

13.1 Sensitivity to Parameter Variations

The system’s sensitivity to changes in a parameter α is defined as the ratio of the percentage
change in the system transfer function G0(s) to the percentage change in the parameter α to its
nominal value α0. Note that α may itself be a transfer function or a block in the block diagram
representation of a system.

To mathematically define the sensitivity, let’s denote the system transfer function as

G0(s) =
N0(s)

D0(s)

Then, the sensitivity of G0 with respect to changes in α is

SG0
α (s) =

∆G0(s)/G0(s)

∆α/α

∣∣∣∣∣
α0

=
α

G0(s)

∆G0(s)

∆α

∣∣∣∣∣
α0

=
α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

A simpler formula for this can be derived as follows:

∂G0(s)

∂α
=

∂

∂α

N0(s)

D0(s)

=
D0(s)

∂N0(s)
∂α

−N0(s)
∂D0(s)

∂α

D0(s)2

=
1

D0(s)

∂N0(s)

∂α
− N0(s)

D0(s)2

∂D0(s)

∂α

=
N0(s)

D0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)

146

Hence

SG0
α (s) =

α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

=
α

G0(s)
G0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

or

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

It is important to note that:

• The sensitivity is really a function of frequency s = jω, and we normally look at the
magnitude as a function of frequency,

∣∣∣SG0
α0

(jω)
∣∣∣

• We are looking at variations from the nominal values of α0

Example 1. Consider the closed-loop system shown below:

-
½¼

¾»
-

K
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

where the nominal values of the parameters are ωn = 20, ζ = 0.1, and K = 0.1. To compute
the sensitivity of the closed-loop system to variations in ωn (from the nominal value) we first
determine the close loop transfer function

G0(s) =
K

1
ω2

n
s2 + 2ζ

ωn
s + 1 + K

=
Kω2

n

s2 + 2ζωns + ω2
n(K + 1)

Hence

N0(s) = Kω2
n

D0(s) = s2 + 2ζωns + ω2
n(K + 1)

147

We then compute

∂N0(s)

∂ωn

= 2ωnK

∂D0(S)

∂ωn

= 2ζs + 2ωn(K + 1)

SG0
ωn

(s) =

(
ωn

N0(s)

)
(2ωnK) +

(
ωn

D0(s)

)
[2ζs + 2ωn(K + 1)]

=
2ω2

nK

ω2
nK

− 2ζωns + 2ω2
n(K + 1)

s2 + 2ζωns + ω2
n(K + 1)

= 2− 2ζωns + 2ω2
n(K + 1)

s2 + 2ζωns + ω2
n(K + 1)

=
[2s2 + 4ζωns + 2ω2

n(K + 1)]− [2ζωns + 2ω2
n(K + 1)]

s2 + 2ζωns + ω2
n(K + 1)

=
2s2 + 2ζωns

s2 + 2ζωns + ω2
n(K + 1)

In terms of frequency this is

SG0
ωn

(jω) =
−2ω2 + 2jζωnω

−ω2 + j2ζωnω + ω2
n(K + 1)

In terms of the magnitude this is

∣∣∣SG0
ωn

(jω)
∣∣∣ =

√
(2ω2)2 + (2ζωnω)2

√
(ω2

n(K + 1)− ω2)2 + (2ζωnω)2

Figure 66 shows a graph of the sensitivity function |SG0
ωn

(jω)| as a function of frequency, for the
nominal values K = 0.1, ωn = 20, and ζ = 0.1. As the figure shows, the system is not very
sensitive to changes in ωn until ω is around 10 rad/sec.

Example 2. Consider the following two systems, the first is an open-loop system with a prefilter
(Gpf) and controller (Gc(s)) before the plant (Gp(s)), and the second is a closed-loop system
with a prefilter outside of the closed-loop and a controller inside the loop before the plant. Let’s

148

10
0

10
1

10
2

0

2

4

6

8

10

12

Frequency (rad/sec)

S
en

si
tiv

ity
, S

G ω
n

Figure 66: The sensitivity function of Example 1, SG0
ωn

(jω)|, as a function of frequency for the
nominal values K = 0.1, ωn = 20, and ζ = 0.1.

examine the sensitivity of each system to variations in the prefilter and controller.

R(s)
- Gpf

- Gc(s) - Gp(s) -
Y (s)

R(s)
- Gpf

-±°
²¯

- Gc(s) - Gp(s) -
Y (s)

6

+-

First we need to determine expressions for the transfer function between the input R(s) and
output Y (s) for the two systems. For the open-loop system we have

Gopen
0 (s) = Gpf (s)Gc(s)Gp(s)

while for the closed-loop system we have

Gclosed
0 (s) =

Gpf (s)Gc(s)Gp(s)

1 + Gc(s)Gp(s)

149

Let’s first compute the sensitivity to variations in the prefilter, Gpf (s). For the open-loop system

S
Gopen

0
Gpf

=
Gpf (s)

N0(s)

∂N0(s)

∂Gpf (s)
− Gpf (s)

D0(s)

∂D0(s)

∂Gpf (s)

=
Gpf (s)

Gpf (s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gpf

=
Gpf (s)

N0(s)

∂N0(s)

∂Gpf (s)
− Gpf (s)

D0(s)

∂D0(s)

∂Gpf (s)

=
Gpf (s)

Gpf (s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

Hence both the open and closed-loop systems are equally sensitive to variations in the prefilter
Gpf (s). This is because the prefilter is outside of the close loop. Feedback cannot help compensate
for variations outside of the closed-loop!
Now let’s compute the sensitivity to variations in the plant, Gp(s). For the open-loop system

S
Gopen

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf (s)Gc(s)Gp(s)
Gpf (s)Gc(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf (s)Gc(s)Gp(s)
Gpf (s)Gc(s)− Gp(s)

1 + Gc(s)Gp(s)
Gc(s)

= 1− Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=
[1 + Gc(s)Gp(s)]− [Gc(s)Gp(s)]

1 + Gc(s)Gp(s)

=
1

1 + Gc(s)Gp(s)

In order to reduce the sensitivity of the system to variations in the plant, we want |1 +
Gc(jω)Gp(jω)| to be large. In this case, the closed-loop system can be made much less sen-
sitive to variations in the plant than the open-loop systems. This is because the plant is inside
of the close loop. Feedback can help compensate for parameter/plant variations inside of the
closed-loop!

150

13.2 Sensitivity to External Disturbances

In addition to the sensitivity of a system to variation in a parameter, we need to also look at
the sensitivity of a system to external disturbances. The two most common models of external
disturbances are (1) a disturbance that changes the controlled variable, and (2) additive noise
in a sensor. Consider the system shown below, with additive disturbances D(s), which models
an output disturbance, and N(s), which models a noise disturbance. When analyzing each of
these disturbances we assume there is only one input to the system at a time.

R(s)
- Gpf

-±°
²¯

-
E(s)

Gc(s) - Gp(s) -±°
²¯
++ -

Y (s)?

D(s)

?

±°
²¯
++¾ N(s)

6

+-

For the output disturbance, we compute the transfer function from D(s) to Y (s) (assuming
N(s) and R(s) are zero) as

E(s) = 0− Y (s)

Y (s) = E(s)Gc(s)Gp(s) + D(s)

= −Gc(s)Gp(s)Y (s) + D(s)

or the closed-loop transfer function from D(s) to Y (s) is

GD
0 (s) =

1

1 + Gc(s)Gp(s)

Hence, to reduce the sensitivity of the system to output disturbances, we need |1+Gc(jω)Gp(jω)|
to be large. This is the same condition we had to reduce the system’s sensitivity to variations
in Gp(s).

For the noise disturbance, we compute the transfer function from N(s) to Y (s) (assuming D(s)
and R(s) are zero) as

E(s) = 0− [N(s) + Y (s)]

Y (s) = E(s)Gc(s)Gp(s)

= −Gc(s)Gp(s)Y (s)−Gc(s)Gp(s)N(s)

or the closed-loop transfer function from N(s) to Y (s) is

GN
0 (s) =

−Gc(s)Gp(s)

1 + Gc(s)Gp(s)

Hence to reduce the sensitivity of the system to noise disturbances we need |Gc(jω)Gp(jω)| to be
small. This is essentially the opposite of the condition we need to reduce the system sensitivity
to variations in Gp(s) or to output disturbances.

151

13.3 Summary

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. We compute
this sensitivity as

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

We usually compute the sensitivity as a function of frequency, ω,
∣∣∣SG0

α0
(jω)

∣∣∣. We are generally
only concerned with the sensitivity within a range of frequencies that our system will be oper-
ating in. From the examples we see that, from a system sensitivity view, a closed-loop system
has no advantages over an open-loop system for parameters or transfer functions outside the
feedback loop. For a closed-loop system with plant Gp(s), to minimize the sensitivity of the
closed-loop system to variations in the plant we want |1 + Gc(jω)Gp(jω)| to be large.

The other type of sensitivity usually refers to how sensitive the system is to output distur-
bances or noise disturbances. To reduce the effects of output disturbances, we again want |1 +
Gc(jω)Gp(jω)| to be large. To reduce the effects of noise disturbances we want |Gc(jω)Gp(jω)|
to be small. These are contradictory conditions. The relative importance of the different dis-
turbances depends on the particular system being analyzed.

152

14 The Routh-Hurwitz Stability Criteria

The Routh-Hurwitz criteria is a method of determining if a system is stable. For example, for
a simple unity feedback system with proportional control, the Routh-Hurwitz criteria can be
used to determine if the system will become unstable for any range of gain kp. Alternatively,
if a system has a variable (or unknown) parameter, the Routh-Hurwitz criteria can be used
to determine the range of values of that parameter before the system becomes unstable. The
Routh-Hurwitz criteria is a necessary and sufficient criteria for the stability of linear systems.

The Routh-Hurwitz criteria is based on the characteristic equation of the transfer function
between the input and the output,

∆(s) = ansn + an−1s
n−1 + an−2s

n−2 + ... + a1s + a0 = 0

From this information we construct the Routh array as follows:

sn an an−2 an−4 ...
sn−1 an−1 an−3 an−5 ...
sn−2 bn−1 bn−3 bn−5 ...
sn−3 cn−1 cn−3 cn−5 ...
...

...
s0 hn−1

Whenever you construct the Routh array, you initially

• write down the powers of s from the highest to s0. It is sometimes difficult to determine
when to stop the array, and if you have written down the powers of s this becomes much
easier.

• starting with the coefficient of the highest power of s in ∆(s), write down every other
coefficient in the first row. Then write down the odd coefficients in the second row. The
rows may not be the same size. If they are not, append as many zeros to the second row
as necessary to make it as long as the first row.

Next we need to compute all of the remaining rows. To fill in the third row, use the formulas

bn−1 =
an−1an−2 − anan−3

an−1

bn−3 =
an−1an−4 − anan−5

an−1

bn−5 =
an−1an−6 − anan−7

an−1

...

It you need a coefficient to use the formulas, and there is no such coefficient in the array, assume
the coefficient is zero. Rather than memorizing the formula, look at the pattern! It’s very
similar to finding the determinant of a matrix.

153

To fill in the fourth row, use the formulas

cn−1 =
bn−1an−3 − an−1bn−3

bn−1

cn−3 =
bn−1an−5 − an−1bn−5

bn−1

cn−5 =
bn−1an−7 − an−1bn−7

bn−1

...

You continue in this way until all rows are filled. Once the Routh array has been constructed,
we use the Routh-Hurwitz criteria:

The number of roots of ∆(s) with positive real parts is equal to the number of sign changes
in the first column of the Routh array.

There are three different conditions for the Routh array we will consider

• No element in the first column is zero

• There is a zero in the first column, but some elements in the row containing the zero are
nonzero

• There is a zero in the first column, and the entire row containing that zero is all zeros.

We will consider each of these in the next three sections.

14.1 No Element in the First Column is Zero

Example 1. Assume we have the characteristic polynomial ∆(s) = s2 + ps + 2, and we want
to know the values of p for which the system is stable. We construct the initial Routh array as
follows:

s2 1 2
s1 p 0
s0 b1

Note that we have appended a zero to the end of the second row, so it is the same size as the
first row. The final entry in the array, b1, is then computed as

b1 =
(p)(2)− (1)(0)

p
= 2

Hence the final array looks like

154

s2 1 2
s1 p 0
s0 2

Now we need to count the sign changes going from top to bottom. All of the elements in the first
column will be positive if p > 0, and there will be no sign changes, and no roots of ∆(s) with
positive real parts. Hence if p > 0, the system will always be stable. For this simple example
we can use the quadratic formula to find the roots of ∆(s) as

−p±√p2 − 8

2

which shows the roots will always have negative real parts if p > 0. While we can use the
quadratic formula in this case, when the order of the characteristic equation becomes larger this
becomes more difficult.

Example 2. Consider the following characteristic equation, ∆(s) = s3 + 0.5s + s + 1 = 0. Is
the system stable?

We construct the initial Routh array as

s3 1 1
s2 0.5 1
s1 b1

s0 c1

To compute b1 we have

b1 =
(0.5)(1)− (1)(1)

0.5
= −1

so the array looks like

s3 1 1
s2 0.5 1
s1 −1
s0 c1

In order to compute c1 we need another entry in the s1 row, hence this entry is a zero

s3 1 1
s2 0.5 1
s1 -1 0
s0 c1

Computing c1 we have

c1 =
(−1)(1)− (0.5)(0)

−1
= 1

155

Hence the final array looks like

s3 1 1
s2 0.5 1
s1 -1 0
s0 1

There are two sign changes in the first column (from + to - and then from - to +), hence there
are two roots of the characteristic polynomial that are are in the right half plane.

Example 3. Assume we have a plant modeled as Gp(s) = 2
s2+s+1

, and we try and control the

system using an integral controller Gc(s) = ki

s
in a unity feedback configuration. The closed

loop transfer function is then

Go(s) =
2ki

s3 + s2 + s + 2ki

Hence the characteristic polynomial is ∆(s) = s3 + s2 + s + 2ki, and we want to know if there
is a range of ki for which the system is stable. We construct the initial Routh array as follows:

s3 1 1
s2 1 2ki

s1 b1

s0 c1

To compute b1 we have

b1 =
(1)(1)− (1)(2ki)

1
= 1− 2ki

so the array looks like

s3 1 1
s2 1 2ki

s1 1− 2ki

s0 c1

In order to compute c1 we need another entry in the s1 row, hence this entry is a zero

s3 1 1
s2 1 2ki

s1 1− 2ki 0
s0 c1

Computing c1 we have

c1 =
(1− 2ki)(2ki)− (1)(0)

1− 2ki

= 2ki

156

Hence the final array looks like

s3 1 1
s2 1 2ki

s1 1− 2ki 0
s0 2ki

Now we need to count the sign changes going from top to bottom. The first two elements in
the row are positive, hence for no sign changes we need all elements in the row to be positive,
hence we need

1− 2ki > 0

2ki > 0

or 0 < ki < 0.5 for stability.

Example 4. Consider the characteristic polynomial ∆(s) = s4 + 2s3 + ps2 + s + 3. Are there
any values of p for which the system is stable?

We form the initial Routh array

s4 1 p 3
s3 2 1 0
s2 b1 b2

s1 c1

s0 d1

where we have appended a 0 to the end of the second column so it is the same length as the
first column. To compute b1 and b2 we have

b1 =
(2)(p)− (1)(1)

2
=

2p− 1

2
= p− 0.5

b2 =
(2)(3)− (1)(0)

2
= 3

The updated array looks like
s4 1 p 3
s3 2 1 0
s2 p− 0.5 3
s1 c1

s0 d1

We can compute c1 as

c1 =
(p− 0.5)(1)− (2)(3)

p− 0.5
=

p− 6.5

p− 0.5

In order to compute d1 we also need to append a zero to the fourth row, so the updated array
looks like

157

s4 1 p 3
s3 2 1 0
s2 p− 0.5 3
s1 p−6.5

p−0.5
0

s0 d1

Finally, we compute

d1 = 3

and the final array looks like

s4 1 p 3
s3 2 1 0
s2 p− 0.5 3
s1 p−6.5

p−0.5
0

s0 3

In order for the system to stable, there can be no sign changes in the first row, which in this
case means all entries must be positive. Hence we need

p− 0.5 > 0
p− 6.5

p− 0.5
> 0

which reduces to the condition p > 6.5 for stability.

14.2 First Column Contains a Zero

If the first column of the Routh array contains a zero there are going to be a problem, since in
computing the entry in the next column you will be dividing by zero, a very bad thing to do. To
get around this problem, we assume the zero is instead a small positive number ε, and continue
computing the rest of the array. When we are all done we let ε → 0 while remaining positive.

Example 5. Consider the characteristic polynomial ∆(s) = s4 + s3 + s2 + s+3. The completed
Routh array looks like

s4 1 1 3
s3 1 1 0
s2 ε 3
s1 ε−3

ε
0

s0 3

In the third row, as ε → 0, ε is still positive, so the first entry in the row is positive. In the fourth
row, as ε → 0, we have 1 − 3

ε
which becomes large and, more importantly, negative as ε → 0,

since ε > 0. Hence there are two sign changes, and thus there are two poles in the right half plane.

158

Example 6. Consider the characteristic polynomial ∆(s) = s4 + s3 + s2 + s + K. Determine if
there are any values of K for which the system is stable. The completed Routh array look like

s4 1 1 K
s3 1 1 0
s2 ε K
s1 ε−K

ε
0

s0 K

Since ε is positive, the first entry in row 3 is positive. In order for the first entry in row 5 to be
positive, we must have K > 0. Looking now at the first entry of the fourth row, if both K > 0
and ε > 0, the entry will be negative. Hence there are no values of K for which the system is
stable.

14.3 Entire Row is Zero

Sometimes an entire row of the Routh array is zero. This means we have found a factor of the
characteristic equation. In order to continue with the Routh array when an entire row is zero,
you form what is called an auxiliary polynomial (the polynomial that factors the characteristic
polynomial), take it’s derivative, and use those coefficients in the row which originally contained
all zeros. This is easier explained with a few examples.

Example 7. Consider the characteristic polynomial ∆(s) = s7+3s6+3s5+s4+s3+3s2+3s+1.
The initial Routh array looks like

s7 1 3 1 3
s6 3 1 3 1
s5 8

3
0 8

3
0

s4 1 0 1
s3 0 0

At this point we have an entire row that is zero. We back up one row to find the auxiliary
polynomial s4 + 1 (recall each row contains every other power). At this point we know that
s4 + 1 is a factor is ∆(s), using long division we have

∆(s) = (s4 + 1)(s3 + 3s2 + 3s + 1)

Now we take the derivative of the auxiliary polynomial and use that for the entries in the row
with all zeros. In this case we compute

d

ds
(s4 + 1) = 4s3

and use these coefficients in the fifth row. The completed Routh array looks like

159

s7 1 3 1 3
s6 3 1 3 1
s5 8

3
0 8

3
0

s4 1 0 1
s3 4 0
s2 ε 1
s1 −4

ε

s0 1

From the Routh array we see there are two sign changes, so there are two poles in the right half
plane. In this case the two right half plane poles come from two of the roots of s4 + 1.

Example 8. Consider the characteristic polynomial ∆(s) = s4 + s3 − s − 1. Use the Routh
array to determine the number of right half plane poles (if any). The initial Routh array looks like

s4 1 0 -1
s3 1 -1 0
s2 1 -1
s1 0 0

The entire fourth row is zero, so the row above determines the auxiliary polynomial, which in
this case is s2 − 1. Using long division we can factor the characteristic polynomial as

∆(s) = (s2 − 1)(s2 + s + 1)

Taking the derivative of the auxiliary polynomial we get

d

ds
(s2 − 1) = 2s

The finished Routh array is

s4 1 0 -1
s3 1 -1 0
s2 1 -1
s1 2 0
s0 -1

There is one sign change in the first column, so there is one pole in the right half plane. This
pole is one of the roots of the equation s2 − 1.

160

15 State Variables and State Variable Feedback

Consider the model of the rectilinear spring-mass-damper system we have been using in lab.

c

m

k k1 2

1

1

F(t)

x (t)1

The equations of motion can be written

m1ẍ1(t) + c1ẋ1(t) + (k1 + k2)x1(t) = F (t)

or

1

ω2
n

ẍ1(t) +
2ζ

ωn

ẋ1(t) + x1(t) =
1

k1 + k2

F (t) ≡ Kstaticu(t)

where u(t) is the motor input in volts, and Kstatic is the static gain for the system. Note that
this gain also includes the open-loop motor gain. We can also write this as

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nKstaticu(t)

We can then take Laplace transforms to get the transfer function

Gp(s) =
X1(s)

U(s)
=

Kstatic

1
ω2

n
s2 + 2ζ

ωn
s + 1

We can also write the model in state variable form. For linear, time-invariant models, a state
variable model has the general form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, and A,B, C,
and D are constant matrices.

For our system, let’s let q1(t) = x(t) and q2(t) = ẋ(t). Then we can write

q̇1(t) = q2(t)

q̇2(t) = −2ζωnẋ(t)− ω2
nx(t) + ω2

nKstaticu(t)

= −2ζωnq2(t)− ω2
nq1(t) + ω2

nKstaticu(t)

= −ω2
nq1(t)− 2ζωnq2(t) + ω2

nKstaticu(t)

161

u(t)
- B

- D

?
-±°

²¯
-

ẋ(t)
1
s

-
x(t)

C -±°
²¯
++ -

y(t)

¾A

6

++

Figure 67: General state variable form for an open-loop plant

-
U(s)

Gp(s) -
Y (s)

Figure 68: General transfer function form for an open-loop plant

If the output is considered to be the position of the cart, the correct state variable form is

d

dt

[
q1(t)
q2(t)

]
=

[
0 1
−ω2

n −2ζωn

] [
q1(t)
q2(t)

]
+

[
0

ω2
nKstatic

]
u(t)

y(t) = [1 0]

[
q1(t)
q2(t)

]

If the output was considered to be the velocity of the cart, the output equation would be

y(t) = [0 1]

[
q1(t)
q2(t)

]

while, if both the position of the cart and the velocity of the cart were the desired outputs, the
output equation would be

y(t) =

[
1 0
0 1

] [
q1(t)
q2(t)

]

We would like to be able to go between a state variable model of a system to a transfer function
model. Each type of model has its benefits. Figure 67 shows the general form for an open-loop
state variable model of a plant, while Figure 68 shows the equivalent transfer function form.

162

15.1 State Variable to Transfer Function Model

Assume we have the state variable description written in scalar form:

ẋ1(t) = a11x1(t) + a12x2(t) + b1u(t)

ẋ2(t) = a21x1(t) + a22x2(t) + b2u(t)

y(t) = c1x1(t) + c2x2(t) + du(t)

In matrix/vector form, this is

[
ẋ1(t)
ẋ2(t)

]
=

[
a11 a12

a21 a22

] [
x1(t)
x2(t)

]
+

[
b1

b2

]
u(t)

y(t) =
[

c1 c2

] [
x1(t)
x2(t)

]
+ [d]u(t)

or

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Taking the Laplace transform of the scalar equations (assuming zero initial conditions) we get

[
sX1(s)
sX2(s)

]
=

[
a11 a12

a21 a22

] [
X1(s)
X2(s)

]
+

[
b1

b2

]
U(s)

Y (s) =
[

c1 c2

] [
X1(s)
X2(s)

]
+ [d]U(s)

We can write this new system of equations in matrix form as

sX(s) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s)

We can rewrite the first equation as

(sI − A) X(s) = BU(s)

or

X(s) = (sI − A)−1BU(s)

We can then solve for Y (s) as

Y (s) =
[
C(sI − A)−1B + D

]
U(s)

or

Y (s) = G(s)U(s)

163

Hence, the transfer function (or transfer matrix, if there is more than one input or output), is
given by

G(s) =
[
C(sI − A)−1B + D

]

In going from a state variable model to a transfer function model, you need to be able to compute
the inverse of a matrix. You are expected to be able to compute the inverse of a 2x2 matrix
without a computer (or calculator). If matrix P is given as

P =

[
a b
c d

]

then

P−1 =
1

ad− bc

[
d −b
−c a

]

and the determinant of P is given by ad− bc.

Example 1. Assume we have the state variable model

ẋ =

[
1 0
2 3

]
x +

[
5
0

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI − A)−1B + D

]

First we compute sI − A as

sI − A =

[
s 0
0 s

]
−

[
1 0
2 3

]
=

[
s− 1 0
−2 s− 3

]

Next we compute

(sI − A)−1 =
1

(s− 1)(s− 3)− (−2)(0)

[
s− 3 0

2 s− 1

]

then

C (sI − A)−1 = [1 2]
1

(s− 1)(s− 3)

[
s− 3 0

2 s− 1

]

=
1

(s− 1)(s− 3)
[(1)(s− 3) + (2)(2) (1)(0) + (2)(s− 1)]

=
1

(s− 1)(s− 3)
[s + 1 2s− 2]

164

and finally

G(s) = C (sI − A)−1 B

=
1

(s− 1)(s− 3)
[s + 1 2s− 2]

[
5
0

]

=
1

(s− 1)(s− 3)
[5(s + 1) + 0(2s− 2)]

=
5(s + 1)

(s− 1)(s− 3)

The poles of the transfer function are at 1 and 3, and there is a zero at -1. The system is clearly
unstable.

Example 2. Assume we have the state variable model

ẋ =

[
1 0
0 0

]
x +

[
1
1

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI − A)−1B + D

]

First we compute sI − A as

sI − A =

[
s 0
0 s

]
−

[
1 0
0 0

]
=

[
s− 1 0

0 s

]

Next we compute

(sI − A)−1 =
1

(s− 1)(s)− (0)(0)

[
s 0
0 s− 1

]

then

C (sI − A)−1 = [1 2]
1

s(s− 1)

[
s 0
0 s− 1

]

=
1

s(s− 1)
[(1)(s) (2)(s− 1)]

=
1

s(s− 1)
[s 2s− 2]

and finally

G(s) = C (sI − A)−1 B

=
1

s(s− 1)
[s 2s− 2]

[
1
1

]

=
1

s(s− 1)
[s + (2s− 2)]

=
3s− 2

s(s− 1)

165

-
r(t)

Gpf
-±°

²ū(t)
- B

- D

?
-±°

²¯
-

ẋ(t)
1
s

-
x(t)

C -±°
²¯
++ -

y(t)

¾A

6

++

¾K

6

+-

Figure 69: State variable model of a plant with state variable feedback.

The poles of the transfer function are at 0 and 1, and there is a zero at −2
3
. The system is

clearly unstable.

15.2 State Variable Feedback

Up to this point, we have shown how we can go from a state variable description of an open-
loop system to a transfer function model. In particular, we can model a plant using either a
transfer function description or a state variable description. We can then implement any of the
single-input single-output controllers we have been utilizing in this course. However, each of
these methods assumes we are feeding back only one variable, usually the output. However, a
state variable model allows us a much more powerful method of control, that of feeding back all
of the states, which is called state variable feedback.

Let’s assume the input to the plant, u(t), is the difference between the scaled reference input,
Gpfr(t), and scaled states, Kx(t), or

u(t) = Gpfr(t)−Kx(t)

Here Gpf is a prefilter, much like we used Gpf (s) for the transfer function feedback systems.
Figure 69 displays a state variable model of a plant with state variable feedback.

With the state variable feedback the state equations become

ẋ(t) = Ax(t) + Bu(t)

= Ax(t) + B [Gpfr(t)−Kx(t)]

= [A−BK] x(t) + [BGpf] r(t)

= Ãx(t) + B̃r(t)

166

where

Ã = [A−BK]

B̃ = BGpf

The output equation is then

y(t) = Cx(t) + Du(t)

= Cx(t) + D [Gpfr(t)−Kx(t)]

= [C −DK] x(t) + [DGpf] r(t)

= C̃x(t) + D̃r(t)

where

C̃ = [C −DK]

D̃ = DGpf

Under most circumstances D = 0 so C̃ = C and D̃ = 0.

The new input to our system is r(t). The transfer function between the input R(s) and the
output Y (s) for the state variable model with state variable feedback is given by

G(s) = C̃
(
sI − Ã

)−1
B̃ + D̃

Example 3. Assume we again have the state variable model

ẋ =

[
1 0
2 3

]
x +

[
5
0

]
u

y = [1 2] x

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
2 3

]
−

[
5
0

]
[K1 K2]

=

[
1 0
2 3

]
−

[
5K1 5K2

0 0

]

=

[
1− 5K1 −5K2

2 3

]

and

B̃ = BGpf =

[
5Gpf

0

]

167

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1− 5K1 −5K2

2 3

]

=

[
s− 1 + 5K1 5K2

−2 s− 3

]

and

(
sI − Ã

)−1
=

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

] [
5Gpf

0

]

=
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Gpf (s− 3)

10Gpf

]

Finally, premultiplying by C we get

G(s) = [1 2]
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Gpf (s− 3)

10Gpf

]

=
5Gpf (s− 3) + (2)(10Gpf)

(s− 1 + 5K1)(s− 3) + 10K2

=
Gpf5(s + 1)

s2 + (5K1 − 4)s + (10K2 − 15K1 + 3)

You should note

• the state variable feedback did not change the zeros of the system

• Gpf is just a scaling factor

• For K1 = K2 = 0 (open-loop) and Gpf = 1 (no prefilter), we get

G(s) =
5(s + 1)

(s− 1)(s− 3)

as before.

Example 4. Assume we again have the state variable model

ẋ =

[
1 0
0 0

]
x +

[
1
1

]
u

y = [1 2] x

168

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
0 0

]
−

[
1
1

]
[K1 K2]

=

[
1 0
0 0

]
−

[
K1 K2

K1 K2

]

=

[
1−K1 −K2

−K1 −K2

]

and

B̃ = BGpf =

[
Gpf

Gpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1−K1 −K2

−K1 −K2

]

=

[
s− 1 + K1 K2

K1 s + K2

]

and

(
sI − Ã

)−1
=

1

(s− 1 + K1)(s + K2)− (K1)(K2)

[
s + K2 −K2

−K1 s− 1 + K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + K1)(s + K2)−K1K2

[
s + K2 −K2

−K1 s− 1 + K1

] [
Gpf

Gpf

]

=
Gpf

(s− 1 + K1)(s + K2)−K1K2

[
s

s− 1

]

Finally, premultiplying by C we get

G(s) = [1 2]
Gpf

(s− 1 + K1)(s + K2)−K1K2

[
s

s− 1

]

=
Gpf (3s− 2)

(s− 1 + K1)(s + K2)−K1K2

=
Gpf (3s− 2)

s2 + (K1 + K2 − 1)s−K2

You should note

169

• the state variable feedback did not change the zeros of the system

• Gpf is just a scaling factor

• For K1 = K2 = 0 (open-loop) and Gpf = 1 (no prefilter), we get

G(s) =
3s− 2

s(s− 1)

as before.

Example 5. Assume we have the state variable model

ẋ =

[
1 0
0 1

]
x +

[
1
2

]
u

y = [3 4] x

We want to find the transfer function model for the system with the state variable feedback.
We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
0 1

]
−

[
1
2

]
[K1 K2]

=

[
1 0
0 1

]
−

[
K1 K2

2K1 2K2

]

=

[
1−K1 −K2

−2K1 1− 2K2

]

and

B̃ = BGpf =

[
Gpf

2Gpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1−K1 −K2

−2K1 1− 2K2

]

=

[
s− 1 + K1 K2

2K1 s− 1 + 2K2

]

and

(
sI − Ã

)−1
=

1

(s− 1 + K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 + K1

]

170

Let’s postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 + K1

] [
Gpf

2Gpf

]

=
Gpf

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

Finally, premultiplying by C we get

G(s) = [3 4]
Gpf

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

=
Gpf [3(s− 1) + 4(2s− 2)]

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

=
11Gpf (s− 1)

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

=
11Gpf (s− 1)

[(s− 1) + K1][(s− 1) + 2K2]− 2K1K2

=
11Gpf (s− 1)

(s− 1)2 + (K1 + 2K2)(s− 1) + 2K1K2 − 2K1K2

=
11Gpf

s− 1 + K1 + 2K2

Note that this transfer function has only one pole.

15.3 Controllability for State Variable Systems

A single-input single-output state variable system is said to be controllable 8 if we can place as
many poles of the closed-loop transfer function as there are states of the state variable model.
For example, if there are two states in the state variable model we assume we want the closed-
loop characteristic equation to be s2 + a1s + a0 and see if we can find K1 and K2 to achieve any
possible values for a1 and a0. If, when the transfer function is simplified as much as possible,
the order of the characteristic equation (the denominator of the transfer function) is less than
the number of states of the system the system is not controllable or uncontrollable.

Example 6. For the state variable system in Example 3, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s2 + (5K1 − 4)s + (10K2 − 15K1 + 3) = s2 + a1s + a0

from which we get

5K1 − 4 = a1

5K1 = a1 + 4

K1 =
a1 + 4

5
8This is one of many possible (and equivalent) definitions.

171

and

10K2 − 15K1 + 3 = a0

10K2 = a0 + 15K1 − 3

10K2 = a0 + 3(a1 + 4)− 3

10K2 = a0 + 3a1 − 9

K2 =
a0 + 3a1 − 9

10

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 7. For the state variable system in Example 4, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s2 + (K1 + K2 − 1)s−K2 = s2 + a1s + a0

from which we get

K2 = −a0

and

K1 + K2 − 1 = a1

K1 = a1 −K2 + 1

K1 = a1 + a0 + 1

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 8. For the state variable system in Example 5, we set the characteristic polynomial
(after all pole/zero cancellations) equal to an arbitrary second order polynomial (since there are
two states)

s− 1 + K1 + 2K2 = s2 + a1s + a0

Clearly it is not possible to find constant values of K1 and K2 so these two equations to be
equal. Hence the system is not controllable.

15.4 Summary

State variable models are an alternative method of modelling a system. However, we can derive
transfer function models from state variable models and state variable models from transfer
function models. State variable models have an advantage over transfer function models in that
we can utilize state variable feedback to place all of the poles of the system if the system is
controllable. Unlike the coefficient matching (Diophantine equation) transfer function methods,
state variable feedback does not add zeros to the closed-loop system.

172

16 Linearization

Up to this point we have assumed that we have a transfer function model of the system we
are trying to control. However, a transfer function model only exists if the system has a linear
model. If a model is not linear, then we need to determine a linear model of the system in order
to use the techniques we have developed in this class. However, this model is likely to be valid
only over a limited range of values. Before we go into how to get a linear model, we need to be
clear on what we mean by a linear system and review Taylor series.

16.1 Linear Systems

In general, if we have input u(t) and output y(t) we can represent the input output relationship
of a system, whether it is linear or not, as

u(t) → y(t)

Assume input u1(t) produces output y1(t) and input u2(t) produces y2(t),

u1(t) → y1(t)

u2(t) → y2(t)

The system is said to be linear if and only if

α1u1(t) + α2u2(t) → α1y1(t) + α2y2(t)

for all α1, α2, u1(t), and u2(t). If a system is not linear, we cannot take its Laplace transform,
and thus cannot use transfer functions. However, we can often produce a linear model of a
system if we assume it does not deviate too much from a fixed (nominal) value. Hence we are
looking for a linear model near a fixed point. Usually we will assume the fixed point is an
equilibrium point. This is very similar to first biasing a transistor circuit, and then using small
signal analysis about this biasing point.

16.2 Taylor Series

Assume we have a function f(z) and we want to approximate the function near z = 0. The
Taylor series approximation near z = 0 is

f(z) ≈ f(0) + f ′(0)z + higher order terms

You should be able to derive all of the entries in Table 16.2. This approximation is only valid
for z near 0. The further away from zero we go, the worse the approximation is likely to be.

173

f(z) Linear Approximation
(1 + z)a 1 + az

eaz 1 + az
cos(az) 1
sin(az) az

ln(1 + z) z
cos(α + z) cos(α)− z sin(α)
sin(α + z) sin(α) + z cos(α)

Table 2: Functions and their linear approximation near z = 0.

16.3 Linearization Procedure

Our goal here is to find a linear model that we can use to determine the transfer function of a sys-
tem. The procedure we will go through is listed below, and will be followed with a few examples.

Step 1 Determine the nominal operating point of the system and the equation that these oper-
ating points solve. We will assume the operating points are the static equilibrium points. At the
static equilibrium points, all derivatives are zero. For the linearization to be valid, the system
must not stray very far from this operating point. Label these points x0, y0, u0, etc. These
points are assumed to be constants.

Step 2 Look at variations from these operation points. For example, we assume

x(t) = x0 + ∆x(t)

y(t) = y0 + ∆y(t)

u(t) = u0 + ∆u(t)

Note that only ∆x(t) , ∆y(t), etc. vary with time. x0, y0, etc. are constants. Now we have two
cases to consider:

Step 2a If our functions are arguments to other standard functions, we leave this approxima-
tion as it is. For example, cos(x(t)) would be rewritten cos(x0 + ∆x(t)). Similarly for all other
trigonometric functions and exponentials.

Step 2b If our functions are not arguments to standard functions, we rewrite the functions as

x(t) = x0 + ∆x(t) = x0

(
1 +

∆x(t)

x0

)

y(t) = y0 + ∆y(t) = y0

(
1 +

∆y(t)

y0

)

u(t) = u0 + ∆u(t) = u0

(
1 +

∆u(t)

u0

)

We rewrite the functions in this way because this is the form we will use the Taylor series on.
Here our small z will be ∆x(t)

x0
, ∆y(t)

y0
, etc.

174

Step 3 Substitute our expressions for x(t), y(t), etc., into the dynamics, and simplify where
possible.

Step 4 Using Taylor series, expand out all nonlinear terms.

Step 5 Put the Taylor series expansion into the defining differential equation and multiply out
all terms.

Step 6 Drop all second order (or higher) terms. Thus terms of the form
(

∆x(t)
x0

)2
,
(

∆x(t)
x0

) (
∆y(t)

y0

)
,

etc. will be dropped.

Step 7 Using the relationships found in step 1, try and remove all constant terms in the model.
If there are any constant terms left over, you have made an error. All of the remaining terms
should be ∆ terms.

Step 8 Find the resulting transfer function.

Example 1. Assume we have the model of a system with input u(t) and output x(t)

ẋ(t) + 3x2(t) = u(t) + 3

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation 3x2
0 = u0 + 3.

Step 2 Assume x(t) = x0

(
1 + ∆x(t)

x0

)
and u(t) =

(
1 + ∆u(t)

u0

)

Step 3 Now substitute into the dynamics and do some simplification

d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+ 3

[
x0

(
1 +

∆x(t)

x0

)]2

= u0

(
1 +

∆u(t)

u0

)
+ 3

∆ẋ(t) + 3x2
0

(
1 +

∆x(t)

x0

)2

= u0 + ∆u(t) + 3

Step 4 Expand out the only nonlinear term we have

(
1 +

∆x(t)

x0

)2

≈ 1 + 2
∆x(t)

x0

Step 5 We now substitute the expanded term into the equation, and simplify as much as possible

∆ẋ(t) + 3x2
0

[
1 + 2

∆x(t)

x0

]
≈ u0 + ∆u(t) + 3

∆ẋ(t) + 3x2
0 + 6x0∆x(t) ≈ u0 + ∆u(t) + 3

Step 6 We have no higher order terms.

175

Step 7 From step 1, we have 3x2
0 = u0 + 3. Substituting this into our equation from step 5 we

have

∆ẋ(t) + [u0 + 3] + 6x0∆x(t) ≈ u0 + ∆u(t) + 3

∆ẋ(t) + 6x0∆x(t) ≈ ∆u(t)

Step 8 Taking Laplace transforms we have

s∆X(s) + 6x0∆X(s) ≈ ∆U(s)

or

∆X(s)

∆U(s)
≈ 1

s + 6x0

Example 2. Assume we have the model of a system with input u(t) and output x(t)

2ẋ(t) +
√

x(t) = cos(u(t))

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation
√

x0 = cos(u0).

Step 2 For the square root term we will assume the form x(t) = x0

(
1 + ∆x(t)

x0

)
while for the

cosine term we will assume the form u(t) = u0 + ∆u(t)

Step 3 Now substitute into the dynamics and do some simplification

2
d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+

√√√√x0

(
1 +

∆x(t)

x0

)
= cos(u0 + ∆u(t))

2∆ẋ(t) +
√

x0

√
1 +

∆x(t)

x0

= cos(u0 + ∆u(t))

Step 4 Expanding out the nonlinear terms we have

√
1 +

∆x(t)

x0

=

(
1 +

∆x(t)

x0

) 1
2

≈ 1 +
1

2

∆x(t)

x0

cos(u0 + ∆u(t)) ≈ cos(u0)−∆u(t) sin(u0)

Step 5 We now substitute the expanded terms into the equation, and simplify as much as possible

2∆ẋ(t) +
√

x0

[
1 +

1

2

∆x(t)

x0

]
≈ cos(u0)−∆u(t) sin(u0)

2∆ẋ(t) +
√

x0 +
1

2
√

x0

∆x(t) ≈ cos(u0)−∆u(t) sin(u0)

Step 6 We have no higher order terms.

176

Step 7 From step 1, we have
√

x0 = cos(u0). Substituting this into our equation from step 5 we
have

2∆ẋ(t) + [cos(u0)] +
1

2
√

x0

∆x(t) ≈ cos(u0)−∆u(t) sin(u0)

2∆ẋ(t) +
1

2
√

x0

∆x(t) ≈ −∆u(t) sin(u0)

Step 8 Taking Laplace transforms we have

2s∆X(s) +
1

2
√

x0

∆X(s) ≈ −∆U(s) sin(u0)

or

∆X(s)

∆U(s)
≈ − sin(u0)

2s + 1
2
√

x0

Example 3. Assume we have the model of a system with input u(t) and output x(t)

ẋ(t) +
1√
x(t)

e−au(t) = 1

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation 1√
x0

e−au0 = 1.

Step 2 For the square root term we will assume the form x(t) = x0

(
1 + ∆x(t)

x0

)
while for the

exponential term we will assume the form u(t) = u0 + ∆u(t)

Step 3 Now substitute into the dynamics and do some simplification

d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+

1√
x0

(
1 + ∆x(t)

x0

)e−au0−a∆u(t) = 1

∆ẋ(t) +
e−au0

√
x0

e−a∆u(t)

√
1 + ∆x(t)

x0

= 1

Step 4 Expanding out the nonlinear terms we have

1√
1 + ∆x(t)

x0

=

(
1 +

∆x(t)

x0

)− 1
2

≈ 1− 1

2

∆x(t)

x0

e−a∆u(t) ≈ 1− a∆u(t)

Step 5 We now substitute the expanded terms into the equation, and simplify as much as possible

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

)
(1− a∆u(t)) ≈ 1

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

− a∆u(t) +
a

2

∆x(t)

x0

∆u(t)

)
≈ 1

177

Step 6 We drop the product ∆x(t)∆u(t) (i.e., we assume it is zero), so we have

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

− a∆u(t)

)
≈ 1

∆ẋ(t) +
e−au0

√
x0

− e−au0

√
x0

1

2

∆x(t)

x0

− e−au0

√
x0

a∆u(t) ≈ 1

Step 7 From step 1, we have e−au0√
x0

= 1. Substituting this into our equation from step 6 we have

∆ẋ(t)− 1

2

∆x(t)

x0

− a∆u(t) ≈ 0

Step 8 Taking Laplace transforms we have

s∆X(s)− 1

2x0

∆X(s)− a∆U(s) ≈ 0

or

∆X(s)

∆U(s)
≈ a

s− 1
2x0

178

A Matlab Commands

In this section I have listed some common Matlab commands and sections of code that you will
be using on the homework problems. You will probably want to use the help, doc, and lookfor
commands to learn more about theses various functions and commands as you go on though
this course. We will only go over some very simple uses of the commands here.

A.1 Figures

The first time you tell Matlab to plot something, it opens a new window and produces a graph.
Matlab’s default is to plot each graph in the same window, overwriting the previous graph. The
figure command is given before plotting a new graph to tell Matlab to open a new window for
a new graph.

A.2 Transfer Functions

We will make extensive use of transfer functions in this course, so we need to know how to enter
them into Matlab. In general, to enter a polynomial such as

as4 + bs3 + cs2 + ds + e

into Matlab, type

poly = [a b c d e];

where the powers are implied, only the coefficients are entered. (The semicolon at the end tell
Matlab not to regurgitate what you just told it.) Hence, if we have a rational transfer function,
such as

H(s) =
s3 + 2s

s4 + 3s3 + s + 5

we can enter the numerator and denominator polynomials separately, as

num = [1 0 2 0]; den = [1 3 0 1 5];

We will usually need to construct the transfer functions explicitly. To do this, type

H = tf(num,den)

This, without the semicolons, should display the transfer function, so you can check that you
entered the correct function. In fact, at any time you can just type H to have Matlab display
what the transfer function is.

i

A.3 Feedback Systems

Let’s assume we want to find the closed loop transfer function for the following system using
Matlab,

R(s)
- s+1

s2+2s+3
-±°

²¯
- 10

s
- s2+2

s3+2s2+1
-

Y (s)

¾1
s+1

6

+-

We first need to define all of the transfer functions

Gpre = tf([1 1],[1 2 3]);

Gc = tf(10,[1 0]);

Gp = tf([1 0 2],[1 2 0 1]);

H = tf(1,[1 1]);

Next, we compute the transfer function for the feedback block using the feedback command

T = feedback(Gc*Gp,H);

Finally we add the prefilter to get the close loop transfer function

G0 = Gpre*T;

A.4 System Response to Arbitrary Inputs

We will make extensive use both the unit step response and the unit ramp response of a system
in this course. For the unit step response, we assume the system is at rest and the input is
u(t) = 1 (a constant) for all t ≥ 0, while for the unit ramp response, we assume the system is
at rest and the input is u(t) = t for all t ≥ 0.

The simplest way to determine the step response to a system is

step(H);

A figure will appear on the screen, with the step response of the system. Note that the system
will determine what it thinks are appropriate parameters. Sometimes, we want more control
and want different inputs other than a step. In that case we use the command lsim. There
are many forms for this command. In its basic form, you need to tell it a transfer function, the
input function ‘u’, and the sample times ‘t’. For example, the following sequence of commands
plots the response of the system

H(s) =
1

s2 + 2s + 1

ii

which is initially at rest (the initial conditions are 0) to an input of cos(3t) from 0 to 100 seconds
in increments of 0.05 seconds and then plots the output.

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

u = cos(3*t); % input is cos(3t) at the sampe times

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

We can (obviously) use the lsim command to determine the step response,

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

nt = length(t); % get the length of the t array

u = ones(1,nt); % input is a sequence of 1’s

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

The following piece of code will plot the step response of system H, showing both the system
response and the input (we generally want the system to track the input), with neat labelling.

%

% The Step Response

%

t = [0:0.1:10]; % time from 0 to 10 in increments of 0.1

u = ones(1,length(t)); % the input is a sequence of 1’s

y = lsim(H,u,t); % sumulate the friggin system

figure; % set up a new figure (window)

plot(t,y,’-’,t,u,’.-’); % plot the system response/input on one graph

grid; % put on a grid;

title(’Step Response of H’); % put on a title

xlabel(’Time (Seconds)’); % put on an x axis label

legend(’Step Response’,’Unit Step’); % put on a legend

A.5 Changing the Line Thickness

As you hopefully have figured out, Matlab allows you to chose the colors for your graphs.
However, sometimes you do not have access to a color printer, or just want to do something
different. The following section of code allows you to plot using different line thicknesses.

%

% Now do line thickness

%

figure;

hold on % this basically means everything else is on one graph

plot(t,y,’-’,’Linewidth’,4); % make the linewidth 4 (really quite large)

iii

plot(t,u,’-’,’Linewidth’,0.2); % make the linewidth 0.2 (really quite small)

legend(’output’,’input’); grid;

hold off % we are done with this graph

%

You should note that even though you are changing the line width, you can still chose both the
type of line to draw (dashed, dotted, etc) and the color. Also, this may not look so good on the
screen, but usually prints out much better with a reasonable quality printer. Also, sometimes
hold on and hold off can act really weird when you are doing many graphs. This is particularly
true if you forgot the hold off.

A.6 Poles and Zeros

For any transfer function, the poles of the system are the roots of the denominator polynomial,
while the zeros of the system are the roots of the numerator polynomial. Hence, if we have a
transfer function

G(s) =
(s + 1)(s− 1)

(s + 2)2(s + 3)(s + 4)

the poles of the system are at -2 (repeated), -3, and -4 while the zeros of the system are at -1,
+1 (and ∞, but we don’t usually talk about this). The poles of the transfer function are the
same as the eigenvalues of the system. We care about the poles of the system since they indicate
how fast the system will respond and the bandwidth of the system. The commands pole(G)
and zero(G) will return the poles and zeros of transfer function G.

A.7 Roots and Polynomials

If we want the roots of a polynomial Q assigned to a variable r , we would use the Matlab
command roots

r = roots(Q);

For example, if Q(s) = s3 + s + 1 and we wanted the roots of Q(s), we would type

Q = [1 0 1 1];

r = roots(Q);

and we would get an array

r =

0.3412 + 1.1615i

0.3412 - 1.1615i

-0.6823

If we wanted to determine the polynomial with roots at 0.3412± 1.1615j,−0.6823 we would use
the poly command

Q = poly([0.3412+1.1615*i 0.3412-1.1615*i -0.6823]);

iv

or, in our case

Q = poly(r);

or

Q = poly([r(1) r(2) r(3)]);

If we want to polynomial with roots at 0.3412± 1.1615j,−0.6823 we can just type

Q = poly([r(1) r(2)]);

A.8 Root Locus Plots

To plot the root locus of a system with open loop transfer function H(s), we use the rlocus
command,

rlocus(H);

You will be able to click on a line and determine both the value of the gain K at that point
and the corresponding closed loop pole values. If we want to know the values of the closed loop
poles at a particular value of K, say K = 10, we type

r = rlocus(H,10)

A.9 Bode Plots, Gain and Phase Margins

To determine the gain and phase margin of a system with open loop transfer function H(s), we
use the margin command

margin(H)

To create the bode plot of a system with open loop transfer function H(s), we use the bode
command

bode(H)

There are a number of useful variations on the bode command. For example, if we want to view
to bode plot over a specified range of frequencies, we type

w = logspace(0,2,100); % create 100 logarithmically spaced points

% between 1 (10^0) and 100 (10^2)

bode(H,w);

Sometimes we want the magnitude and phase of the transfer function H(s). We can use the
command

[Mag,Phase,w] = bode(H);

Mag = Mag(:);

Phase = Phase(:);

v

In this command, Matlab returns the magnitude (not in dB), phase,and frequencies the function
was evaluated at, but the magnitude and phase are stored in a weird way. The command
Mag = Mag(:) forces Matlab to put them in a column. We can also specify which frequencies
we want to evaluate the function at

[Mag,Phase] = bode(H,w);

If we then want to just plot the magnitude of the transfer function we can use

Mag = Mag(:);

Mag_dB = 20*log10(Mag);

semilogx(w,Mag_dB); grid;

vi

