
Lab 4: ITAE, Deadbeat, and Quadratic Optimal Control

Overview

In this lab you will be controlling the systems you previously modeled using an ITAE, a
deadbeat, and quadratic optimal controller (one of each type of controller.). For each
system you modeled, you need to plot and examine the difference between how the model
predicts the response and how the system actually responds.

You will need to set up a folder for Lab 4 and copy all files from the folder basic_files
into this folder. You will need your Simulink model and the closedloop_driver.m file
from your homework for this lab.

Special note: When comparing the predicted response and the actual response, I do not
want to see a graph that shows very little. For example, if both the predicted response
and the real response have settled within 0.5 seconds, I do not want to see a graph that
goes out to 4 seconds.

Design Specifications: For each of your systems, you should try and adjust your
parameters until you have achieved the following:

Torsional Systems (Model 205)

• Settling time less than 0.5 seconds.
• Absolute value of the steady state error less than 2 degrees for a 15 degree step,

and less than 1 degree for a 10 degree step (the input to the Model 205 must be in
radians!)

• Percent Overshoot less than 10%

Rectilinear Systems (Model 210)

• Settling time less than 0.5 seconds.
• Absolute value of the steady state error less than 0.1 cm for a 1 cm step, and less

than 0.05 cm for a 0.5 cm step
• Percent Overshoot less than 10%

You should start with the lower step amplitudes, and work your way up to the higher step
amplitudes. Not all systems or controllers will work for a 1 cm step or a 15 degree step.
Your real systems may oscillate a bit. If this happens try to reduce the input level, since
this limits the allowed control effort. It may not be possible to eliminate all of the
oscillations, since these types of controllers depend on canceling the plant dynamics, and
if your model is not accurate enough the controller will not cancel the real plant well
enough. Do the best you can, as though your grade depended on it.

PART A: Changes to closedloop_driver.m

Note: You may not need to make all of the changes below. It depends on how much you
may have modified this file. It will speed up lab time if these changes are made before
lab.

You should end up with a section of code which includes all the different types of
controllers. You will comment out the types you are not using, and will be adding to these
in the next few labs.

Step 1: Modify closedloop_driver.m to read in your state model file. For example, if the
model file was named state_model_1dof.mat you need the following near the beginning
of your Simulink file

load state_model_1dof
C = [1 0];
[num_Gp,den_Gp] = ss2tf(A,B,C,D);

Step 2: Be sure closedloop_driver.m contains the following lines.

num_Gp = (abs(num_Gp) > tol*ones(1,length(num_Gp))).*num_Gp;
den_Gp = (abs(den_Gp) > tol*ones(1,length(den_Gp))).*den_Gp;

Step 3: Modify the saturation_level variable in closedloop_driver.m for the appropriate
system.

saturation_level = 1000/2196; % (rectilinear system, Model 210)
saturation_level = 1000/2546; % (torsional system, Model 205)
Comment out these lines until you need them. To comment out use a ‘%’

Step 4: Modify closedloop_driver.m for utilizing ITAE model matching control. Here,
the desired closed loop transfer function is:

2

2 2()
1.4

o
o

o o

G s
s s

ω
ω ω

=
+ +

You should enter this into closedloop_driver.m, but leave the frequency oω a variable.

Step 5: Modify closedloop_driver.m for utilizing deadbeat model matching control.
Here the desired closed loop transfer function is:

2

2 2()
1.82

o
o

o o

G s
s s

ω
ω ω

=
+ +

You should enter these into closedloop_driver.m, but leave the frequency oω a variable.

Step 6: Modify closedloop_driver.m to utilize quadratic optimal control, similar to your
homework. You should add the lines

q = 1; % or whatever you want
Go = solve_quadratic(Gp,q);

Step 7: Modify closedloop_driver.m to determine the controller. For model matching
control, this will be

Gc = minreal(Go/(Gp*(1-Go))

Be sure to use the minreal command.

Step 8: Be sure closedloop_driver.m computes the prefilter gain, Gpf. You did this in
Lab 1.

PART B: Creating Closed Loop Simulink Systems for the ECEp Systems

Torsional Systems: Open Model205_Openloop.mdl and save it as
Model205_Closedloop.mdl. Then modify Model205_Closedloop.mdl so it looks like
the following

This is a cross between closedloop.mdl and Model205_Openloop.mdl., so you can
pretty much just cut and paste. Note that if you want to scale to degrees, you must do this
after the feedback branch. In the step function, be sure the Final value is set to Amp, the
Step time is set to zero. Also set the Stop time (Select Simulation then Simulation
Parameters) to Tf.

Rectilinear Systems: Open Model210_Openloop.mdl and save it as
Model210_Closedloop.mdl. Then modify Model210_Closedloop.mdl so it looks like
the following

This is a cross between closedloop.mdl and Model210_Openloop.mdl., so you can
pretty much just cut and paste. In the step function, be sure the Final value is set to Amp,
the Step time is set to zero. Also set the Stop time (Select Simulation then Simulation
Parameters) to Tf.

PART C: Control of One Degree of Freedom Systems

For each of your two 1 dof systems, you will need to go through the following steps:

Step 1: Set up the 1 dof system exactly the way it was when you determined its model
parameters.

Step 2: Modify closedloop_driver.m to read in the correct model file. You may have to
copy this model file to the current folder.

Step 3: Modify closedloop_driver.m to use the correct saturation_level for the system
you are using.

Step 4: ITAE Control. (Be sure to record the value of oω you use.)

• Vary oω until you meet the design specs with the simulation
(closedloop_driver.m). The larger the value of oω , the faster your system will
respond and the closer your model will predict the response of the real system. Be
sure you do not reach the limiter on the control effort, unless you really like
restarting your computer. At this point all of the variables you should need are in
your current Matlab workspace.

• Compile the correct closed loop ECP Simulink driver, connect to the system, and

run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the

simulation and the real system on one nice, neatly labeled graph. The results for
the torsional systems must be displayed in degrees. You need to include this
graph in your memo.

Step 5: Deadbeat Control. (Be sure to record the value of oω you use.)

• Vary oω until you meet the design specs with the simulation

(closedloop_driver.m). The larger the value of oω , the faster your system will
respond and the closer your model will predict the response of the real system. Be
sure you do not reach the limiter on the control effort, unless you really like
restarting your computer. At this point all of the variables you should need are in
your current Matlab workspace.

• Compile the correct closed loop ECP Simulink driver, connect to the system, and

run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the
simulation and the real system on one nice, neatly labeled graph. The results for
the torsional systems must be displayed in degrees. You need to include this
graph in your memo.

Step 6: Quadratic Optimal Control. (Be sure to record the value of q you use.)

• Vary q until you meet the design specs with the simulation (closedloop_driver.m).
Be sure you do not reach the limiter on the control effort, unless you really like
restarting your computer. At this point all of the variables you should need are in
your current Matlab workspace. You may have to do a little trial and error here to
get the real system to respond as the way you think it should.

• Compile the correct closed loop ECP Simulink driver, connect to the system, and

run the simulation.

• Use the compare1.m file (or a modification of it) to plot the results of both the
simulation and the real system on one nice, neatly labeled graph. The results for
the torsional systems must be displayed in degrees. You need to include this
graph in your memo.

Your memo should include at least three graphs for each of the 1 dof systems you used.
The values of q or oω used in the controller must be in the figure captions or as part of the
graph (not handwritten). The figures should all be attachments, at least two per page.
Your memo should compare the difference between the predicted response (from the
model) and the real response (from the real system) for each of the systems. Attach your
Matlab driver file closedloop_driver.m

