
ECE-320: Linear Control Systems 
Homework 1 

 
Due: Wednesday March 15 at 3:30 PM 
 
1) The (one sided) Laplace transform is defined as 
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a) By differentiating both sides of the above equation with respect to , show that s
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b) By evaluating the integral, show that, if the real part of a is positive, 
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c) Combining parts (a) and (b), and a little bit of Maple free calculus, 
show that 
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The moral of this problem is if a pole is repeated in the Laplace ( ) domain, we just 
multiply by  in the time domain to get the shape of the time response. (There is still some 
scaling involved, but we are mostly concerned with the shape of the signal.) 
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2) Starting from the definition of the Laplace transform, show 
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Note that in this problem, we are assuming ( ) ( ) ( )x t x t u t=  and 
that 0 0( ) ( ) ( 0 )x t t x t t u t t− = − − . That is, we assume ( )x t  is zero for 0t <  and 0( )x t t−  is 
zero for . 0t t<

The moral of this problem is that any time you see an 0ste−  in the Laplace domain, there 
is a delay, or transport lag, in the time domain. 
 
3) Starting from the definition of the Laplace transform, show ( ) ( )atx t e X s a− ⇔ +  
Using this result, and completing the square in the denominator, show that 
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where and is assumed to be positive (complex conjugate roots) 2 2b c a= − 2b
 
4) Determine the impulse response of the following using partial fractions as necessary. 
You are expected to be able to do all of these with the Laplace transform Table in the 
notes, and the properties above. You may check your answers with Maple. 
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 (Hint: Ignore the exponential term (assume it is a 1) and find the 

inverse Laplace transform, then include the transport delay.) 
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5) For systems with the following transfer functions: 
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a) Determine the unit step and unit ramp response for each system using Laplace 
transforms. Your answer should be time domain functions ( )ay t  and ( )by t . 
 
b) From these time domain functions, determine the steady state errors for a unit step and 
unit ramp input. 
 
c) Using the equations derived in class (and in the notes), determine the steady state 
errors for a unit step and a unit ramp input directly from the transfer functions. 
 
The following Matlab code can be used to estimate the step and ramp response for 5 
seconds for transfer function . ( )bH s
 
H = tf([1 6],[1 5 6]);                                    % enter the transfer function 
t = [0:0.01:5];                                              % t goes from 0 to 5 by increments of 0.01 
ustep = ones(1,length(t));                            % the step input is all ones, u(t) = 1; 
uramp = t;                                                    % the ramp input is has the input u(t) = t; 
ystep = lsim(H,ustep,t);                              % find the step response 
yramp = lsim(H,uramp,t);                           % find the ramp response 
figure;                                                          % make a new figure 
orient tall                                                     % or orient landscape, use more of the page 
subplot(2,1,1);                                             % put two graphs on one piece of paper 
plot(t,ustep,'.-',t,ystep,'-');                            % plot input/output with different line types 
grid;                                                              % put a grid on the graph 
legend('Step Input','Step Response',4);         % put a legend on the graph 
subplot(2,1,2);                                              % second of two graphs on one piece of paper 
plot(t,uramp,'.-',t,yramp,'-');                          % plot input/output with different line types 
grid;                                                               % put a grid on the graph 
legend('Ramp Input','Ramp Response',4);    % put a legend on the graph 
 
d) Plot the step and ramp response for both systems (a and b) and indicate the steady state 
errors on the graph. Draw on the graph to show you know what the steady state errors 
are. 
 
Ans.  Steady state errors for a unit step input: 0.5,0; for a unit ramp input : infinity and 
0.666 
 



Preparation for Lab 2 
 
6) Consider the following one degree of freedom system we will be utilizing this term: 
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a) Draw a freebody diagram of the forces on the mass. 
 
b) Show that the equations of motion can be written: 
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c) What are the damping ratio ζ , the natural frequency nω , and the static gain K  in terms 
of , , , and ? 1m 1k 2k 1c
 
d) Show that the transfer function for the plant is given by 
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7) One of the methods we will be using to identify ζ and nω is the log-decrement 
method, which we will review/derive in this problem. If our system is at rest and we 
provide the mass with an initial displacement away from equilibrium, the response due to 
this displacement can be written 
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where 
 

1( )x t = displacement of the mass as a function of time 
ζ  = damping ratio 

nω = natural frequency 

dω = damped frequency = 21nω ζ−  
 
After the mass is released, the mass will oscillate back and forth with period given by 
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Let's assume is the time of one peak of the cosine. Since the cosine is periodic, 
subsequent peaks will occur at times given by 
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a) Show that 
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show that we can compute the damping ratio as 
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c) Given the initial condition response shown in the Figures 3 and 4 on the next page, 
estimate the damping ratio and natural frequency using the log-decrement method. (You 
should get answers that include the numbers 15, 0.2, 0.1 and 15, approximately.) 
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Figure 3. Initial condition response for second order system A. 
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Figure 4. Initial condition response for second order system B. 

 
 


