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− ζπ√

1−ζ2 × 100%

If β = POmax

100
, then

ζ =
− ln(β)

π√
1 +

(− ln(β)
π

)2

Time to Peak: Tp = π
ωd

Settling Time: Ts = 4
ζωn

Consider a plant with proper transfer function Gp(s) = N(s)/D(s) where

• N(s) and D(s) have no common factors

• The leading coefficient of D(s) (the coefficient of the highest power of s in D(s)) is 1.

An implementable transfer function G0(s) that minimizes the performance index

J =
∫ ∞

0

{
q [y(t)− r(t)]2 + u2(t)

}
dt

where r(t) = 1 (a unit step) and q > 0 is given by

G0(s) =
qN(0)N(s)

D0(0)D0(s)

where

Q(s) = D(s)D(−s) + qN(s)N(−s) = D0(s)D0(−s)



Root Locus Construction

Once each pole has been paired with a zero, we are done!

1. Loci Branches

poles (k = 0) → zeros (k = ∞)

Continuous curves, which comprise the locus, start at each of the n poles of G(s) for which
k = 0. As k approaches ∞, the branches of the locus approach the m zeros of G(s). Locus
branches for excess poles extend to infinity.
The root locus is symmetric about the real axis.

2. Real Axis Segments

The root locus includes all points along the real axis to the left of an odd number of poles plus
zeros of G(s).

3. Asymptotic Angles

As k →∞, the branches of the locus become asymptotic to straight lines with angles

θ =
180o + i360o

n−m
, i = 0,±1,±2, ...

until all (n−m) angles not differing by multiples of 360o are obtained. n is the number of poles
of G(s) and m is the number of zeros of G(s).

4. Centroid of the Asymptotes

The starting point on the real axis from which the asymptotic lines radiate is given by

σc =

∑
i pi −∑

j zj

n−m

where pi is the ith pole of G(s), zj is the jth zero of G(s), n is the number of poles of G(s) and
m is the number of zeros of G(s). This point is terms the centroid of the asymptotes.

5. Leaving/Entering the Real Axis

When two branches of the root locus leave or enter the real axis, they usually do so at angles of
±90 degrees.



Controller Types

Proportional (P), Gc(s) = k

Integral (I), Gc(s) = k/s

Proportional + Integral (PI), Gc(s) = k(s + z)/s

Proportional + Derivative (PD), Gc(s) = k(s + z)

Proportional + Integral + Derivative (PID), Gc(s) = k(s + z1)(s + z2)/s

Lead, Gc(s) = k(s + z)/(s + p), p > z

Lag, Gc(s) = (s + z)/(s + p), z > p



Diophantine Equations

For plant Gp(s) = N(s)/D(s), controller Gc(s) = B(s)/A(s), and desired characteristic equation
D0(s) we will have to solve the equation

A(s)D(s) + B(s)N(s) = D0(s)

This is called the Diophantine equation. We solve this equation by equating powers of s, setting
up a system of equations, and then solving. The closed-loop transfer function will be

G0(s) =
B(s)N(s)

D0(s)

where B(s) contains the zeros we have added to the system.

Theorem Strictly Proper Plant Assume we have a strictly proper nth order plant transfer func-
tion, Gp(s) = N(s)/D(s). Since Gp(s) is strictly proper we have the degree of N(s) < the degree
of D(s). Since Gp(s) is nth order the degree of D(s) = n. Assume also that N(s) and D(s)
have no common factors. Then for any polynomial D0(s) of degree n + m a proper controller
Gc(s) = B(s)/A(s) of degree m exists so that the characteristic equation of the resulting closed-
loop system is equal to D0(s). If m = n − 1, the controller is unique. If m ≥ n, the controller
is not unique and some of the coefficients can be used to achieve other design objectives.

Theorem Special case: degree N(s) = degree D(s). Assume we have a proper nth order plant
transfer function, Gp(s) = N(s)/D(s), where the degree of D(s) = degree N(s) = n. Assume
also that N(s) and D(s) have no common factors. Then for any polynomial D0(s) of degree
n + m a proper controller Gc(s) = B(s)/A(s) of degree m exists so that the characteristic equa-
tion of the resulting closed-loop system is equal to D0(s). If m = n, and the controller is chosen
to be strictly proper, the controller is unique. If m ≥ n + 1, the controller is not unique and
some of the coefficients can be used to achieve other design objectives.



f(z) Linear Approximation
(1 + z)a 1 + az

eaz 1 + az
cos(az) 1
sin(az) az

ln(1 + z) z
cos(α + z) cos(α)− z sin(α)
sin(α + z) sin(α) + z cos(α)

Table 1: Functions and their linear approximation near z = 0.

Taylor Series

Assume we have a function f(z) and we want to approximate the function near z = 0. The
Taylor series approximation near z = 0 is

f(z) ≈ f(0) + f ′(0)z + higher order terms

You should be able to derive all of the entries in Table . This approximation is only valid for z
near 0. The further away from zero we go, the worse the approximation is likely to be.

Linearization Procedure

Our goal here is to find a linear model that we can use to determine the transfer function of a sys-
tem. The procedure we will go through is listed below, and will be followed with a few examples.

Step 1 Determine the nominal operating point of the system and the equation that these oper-
ating points solve. We will assume the operating points are the static equilibrium points. At the
static equilibrium points, all derivatives are zero. For the linearization to be valid, the system
must not stray very far from this operating point. Label these points x0, y0, u0, etc. These
points are assumed to be constants.

Step 2 Look at variations from these operation points. For example, we assume

x(t) = x0 + ∆x(t)

y(t) = y0 + ∆y(t)

u(t) = u0 + ∆u(t)

Note that only ∆x(t) , ∆y(t), etc. vary with time. x0, y0, etc. are constants. Now we have two
cases to consider:

Step 2a If our functions are arguments to other standard functions, we leave this approxima-
tion as it is. For example, cos(x(t)) would be rewritten cos(x0 + ∆x(t)). Similarly for all other
trigonometric functions and exponentials.



Step 2b If our functions are not arguments to standard functions, we rewrite the functions as

x(t) = x0 + ∆x(t) = x0

(
1 +

∆x(t)

x0

)

y(t) = y0 + ∆y(t) = y0

(
1 +

∆y(t)

y0

)

u(t) = u0 + ∆u(t) = u0

(
1 +

∆u(t)

u0

)

We rewrite the functions in this way because this is the form we will use the Taylor series on.
Here our small z will be ∆x(t)

x0
, ∆y(t)

y0
, etc.

Step 3 Substitute our expressions for x(t), y(t), etc., into the dynamics, and simplify where
possible.

Step 4 Using Taylor series, expand out all nonlinear terms.

Step 5 Put the Taylor series expansion into the defining differential equation and multiply out
all terms.

Step 6 Drop all second order (or higher) terms. Thus terms of the form
(

∆x(t)
x0

)2
,
(

∆x(t)
x0

) (
∆y(t)

y0

)
,

etc. will be dropped.

Step 7 Using the relationships found in step 1, try and remove all constant terms in the model.
If there are any constant terms left over, you have made an error. All of the remaining terms
should be ∆ terms.

Step 8 Find the resulting transfer function.



Table of Laplace Transforms

f (t) F (s)
δ(t) 1

u(t) 1
s

tu(t) 1
s2

tn−1

(n−1)!u(t) (n = 1, 2, 3...) 1
sn

tnu(t) (n = 1, 2, 3, ...) n!
sn+1

e−atu(t) 1
s+a

te−atu(t) 1
(s+a)2

1
(n−1)!t

n−1e−atu(t) (n = 1, 2, 3, ...) 1
(s+a)n

tne−atu(t) (n = 1, 2, 3, ...) n!
(s+a)n+1

sin(bt)u(t) b
s2+b2

cos(bt)u(t) s
s2+b2

e−at sin(bt)u(t) b
(s+a)2+b2

e−at cos(bt)u(t) (s+a)
(s+a)2+b2


