
ECE-320: Linear Control Systems 
Homework 1 

 
Due: Tuesday March 15 at 10 AM 
 
1) The (one sided) Laplace transform is defined as 
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a) By differentiating both sides of the above equation with respect to , show that s
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b) By evaluating the integral, show that, if the real part of a is negative, 
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c) Combining parts (a) and (b),  and a little bit of Maple free calculus, 
show that 
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The moral of this problem is if a pole is repeated in the Laplace ( ) domain, we just 
multiply by  in the time domain to get the shape of the time response. 
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2) Starting from the definition of the Laplace transform, show 
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Note that in this problem, we are assuming ( ) ( ) ( )x t x t u t=  and 
that 0 0( ) ( ) ( 0 )x t t x t t u t t− = − − . That is, we assume ( )x t  is zero for 0t <  and 0( )x t t−  is 
zero for . 0t t<
 
The moral of this problem is that any time you see an 0ste−  in the Laplace domain, there 
is a delay, or transport lag, in the time domain. 
 
3) Starting from the definition of the Laplace transform, show 
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Using this result, and completing the square in the denominator, show that 
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where and is assumed to be positive (complex conjugate roots) 2 2b c a= − 2b
 
This is an amoral problem 
 
4) Determine the impulse response of the following using partial fractions as necessary. 
You are expected to be able to do all of these with the Laplace transform Table in the 
notes, and the properties above. You may check your answers with Maple. 
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Preparation for Lab 2. 
 
5) Consider the following one degree of freedom system we will be utilizing this term: 
 

c

m

k k1 2

1

1

F(t)

x  (t)1

 
a) Draw a freebody diagram of the forces on the mass. 
 
b) Show that the equations of motion can be written: 
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c) What are the damping ratio ζ , the natural frequency nω , and the static gain K  in terms 
of , , , and ? 1m 1k 2k 1c
 
d) Show that the transfer function for the plant is given by 
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6) One of the methods we will be using to identify ζ and nω is the log-decrement 
method, which we will review/derive in this problem. If our system is at rest and we 
provide the mass with an initial displacement away from equilibrium, the response due to 
this displacement can be written 
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where 
 

1( )x t = displacement of the mass as a function of time 
ζ  = damping ratio 

nω = natural frequency 

dω = damped frequency = 21nω ζ−  
 
After the mass is released, the mass will oscillate back and forth with period given by 
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Let's assume is the time of one peak of the cosine. Since the cosine is periodic, 
subsequent peaks will occur at times given by 
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a) Show that 
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show that we can compute the damping ratio as 
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c) Given the initial condition response shown in the Figures 1 and 2 on the next page, 
estimate the damping ratio and natural frequency using the log-decrement method. (You 
should get answers that include the numbers 15, 0.2, 0.1 and 15, approximately.) 
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Figure 1. Initial condition response for second order system A. 
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Figure 2. Initial condition response for second order system B. 

 
 



7)  (Note: To do this problem you need to either be using Matlab 6.5.1 or will have to 
make a new version of openloop.mdl that works with the version of Matlab you are using. 
If you are using Matlab 7.0 you most likely cannot read/utilize the Simulink files on the 
class website.)  
 
Download the files waytoolong.mat and compare1.m from the class website. The file 
waytoolong.mat  represents data that was collected from an unknown system that was 
subjected to a step input of amplitude 0.1 cm. In this problem you need to try and identify 
the system using the files you developed and utilized in lab 1. 
 
a) In Matlab, type load waytoolong.mat. This should load two new arrays into your 
workspace, time and x1. 
 
b) Type plot(time,x1); grid; in Matlab to be sure you have something that looks like the 
response of a second order system. 
 
c) Edit the beginning of the file openloop_driver.m as follows: 
 
comment out these lines by using a % sign 
 
%  load state_model_1dof 
% C = [1 0]; 
%[num_Gp,den_Gp] = ss2tf(A,B,C,D); 
 
add these lines to try and model the unknown system 
 
zeta = 0.1;                                                           % estimate of damping ratio 
omega_n = 10.0;                                                 % estimate of natural frequency 
K = 20;                                                                % estimate of static gain 
num_Gp = [K];                                                   % the new numerator 
den_Gp = [1/omega_n^2 2*zeta/omega_n 1];   % the new denominator 
 
set the input amplitude Amp to 0.1 cm, and the final time to something convenient that 
allows you to see alot of what is happening. 
 
d) Run openloop_driver.m, then run compare1.m. The file compare1.m is a routine we 
will be using alot in lab to compare the response of a model (m_time and m_y from the 
Simulink model) with that of a real system (time and x1), so you might want to figure out 
how it works. You will need to modify it in Lab 2. If everything has gone correctly, you 
should get a plot like that shown in Figure 3 for Tf =2.0 seconds. 
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Figure 3: Step response of mystery second order system 

 
e) You now need to adjust the static gain (K), the damping ratio (zeta), and the natural 
frequency (omega_n) in the model file to try and make the model match the real system. 
You should pay attention to how changing K, zeta, and omega_n changes the response of 
the model, since this is the kind of stuff that will be showing up on quizes and exams. 
When you are done, turn in your final plot comparing the real system to your model, and 
also your modified openloop_driver.m file. (Note: This system was easier to model than 
the systems we have in lab, as you will see....) 


