ECE-320, Practice Quiz \#8

1) Consider the characteristic equation $\Delta(s)=s^{3}+2 k s^{2}+s+1$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>0$
b) no value of k
c) $0<k<0.5$
d) $k>0.5$
2) Consider the characteristic equation $\Delta(s)=s^{3}+s^{2}+s+2 k$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>0 \quad$ b) no value of k
c) $0<k<0.5$
d) $k>0.5$
3) Consider the characteristic equation $\Delta(s)=k s^{3}+s^{2}+s+1$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>1$
b) no value of k
c) $0<k<0.5$
d) $0<k<1$
e) $k>0.5$
4) Consider the characteristic equation $\Delta(s)=s^{4}+3 s^{3}+2 s^{2}+s+k$. Using the Routh-Hurwitz array, we can determine the system is stable for
a) all $k>1$
b) no value of k
c) $0<k<5 / 9$
d) $k>5 / 9$
e) all $k>0$
5) For the 2×2 matrix $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the inverse of this matrix, P^{-1}, is which of the following:
a) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
b) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
c) $P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
d) $P^{-1}=\frac{1}{a d+b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
e) $P^{-1}=\frac{1}{a d+b c}\left[\begin{array}{ll}d & b \\ c & a\end{array}\right]$
f) none of these
6) For the following state variable model

$$
\begin{aligned}
& \dot{q}(t)=\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right] q(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] q(t)
\end{aligned}
$$

The poles of the system are at
a) - 1 and -3
b) -2 and -2
c) 1 and 3
d) 0 and 1
e) 1 and 2
7) For the following state variable model

$$
\begin{aligned}
& \dot{q}(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right] q(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] q(t)
\end{aligned}
$$

The poles of the system are at
a) -1 and -2
b) - 1 and -1
c) 1 and 3
d) 0 and 1
e) 1 and 2
8) For the following state variable model

$$
\begin{aligned}
& \dot{q}(t)=\left[\begin{array}{cc}
-1 & -1 \\
1 & -3
\end{array}\right] q(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] q(t)
\end{aligned}
$$

The poles of the system are at
a) - 1 and -3
b) -2 and -2
c) 1 and 3
d) 0 and 1
e) -1 and -2

Answers: 1-d, 2-c, 3-d, 4-c, 5-c, $6-e, 7-b, 8-b$

