
ECE-320: Linear Control Systems 
Homework 8 

 
Due:  Tuesday October 27, 2009   at the beginning of class 
 
Exam #2, Thursday October 29 
 
 
1) For the plant 
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show that the first order controller that put the closed loop poles at 1 j− ±  and -3 is 
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2) For the plant 
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a) Determine a controller so the closed loop pole is at -10, and then determine a prefilter 
so the steady state error for a unit step is zero. 
 
b) Determine a controller so the system is a type 1 system and the closed loop poles 
are at . Show that the resulting closed loop transfer function is 
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and determine the steady state error for a unit ramp. 
 

3) For the plant 
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a) Determine a strictly proper controller so the closed loop poles are at , 
determine the closed loop transfer function, and find a constant prefilter so the steady 
state error for a unit step is zero. Show that the resulting closed loop transfer function 
(without the prefilter) is  
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b) Determine a strictly proper controller so the closed loop poles are at  
and -5 ( ), and the system is a type one system. Show that the 
resulting closed loop transfer function is 
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4)  Consider the plant  
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where 3 is the nominal value of 0α  and 0.5 is the nominal value of 1α . In this problem we 
will investigate the sensitivity of closed loop systems with various types of controllers to 
these two parameters. We will assume we want the settling time of our system to be 0.5 
seconds and the steady state error for a unit step input to be less than 0.1. 
 
a)  (ITAE Model Matching) Since this is a first order system, we will use the first order 
ITAE model, 
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i) For what value of oω will we meet the settling time requirements and the steady state 
error requirements? 
 
ii) Determine the corresponding controller . ( )cG s
 
iii) Show that the closed loop transfer function (using the parameterized form of  
and the controller from part ii) is 
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iv) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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v) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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b) (Quadratic Optimal) For , show that the quadratic optimal closed loop 
transfer function is approximately 
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Hence the results of both of our model matching methods will be very nearly the same. 
 
 



c) (Proportional Control) Consider a proportional controller, with 2.5pk = . 
 
i) Show that the closed loop transfer function is 
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ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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d) (Proportional+Integral Control) Consider a PI controller with 4pk =  and . 40ik =
 
i) Show that the closed loop transfer function is 
 

0

1 0

4 ( 10)( )
( ) 4 ( 1o

sG s
s s s 0)

α
α α

+
=

+ + +
 

 
ii) Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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e) (Diophantine Equations) Consider a controller designed using the Diophantine 
equations. Assume we want a type 1 system and closed loop poles both at -8. 
 
i) Show that the controller is given by 
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ii)  Show that the sensitivity of to variations in ( )oG s 0α  is given by 
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iii) Show that the sensitivity of to variations in ( )oG s 1α  is given by 
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f) Using Matlab, simulate the unit step response of each type of controller (except the 
quadratic optimal). Plot all responses on one graph. Use different line types and a legend. 
Turn in your plot and code. 
 
g) Using Matlab and subplot, plot the sensitivity to 0α  for each type of controller (except 
the quadratic optimal) on one graph at the top of the page, and the sensitivity to 1α  on 
one graph on the bottom of the page. Be sure to use different line types and a legend.  
Turn in your plot and code. Only plot up to about 8 Hz (50 rad/sec) using a semilog scale 
with the sensitivity in dB (see below). Do not make separate graphs for each system! 
 
In particular, these results should show you that the model matching methods, which 
essentially try and cancel the plant, are generally more sensitive to getting the plant 
parameters correct that either the PI or the Diophantine methods for low frequencies. 
However, for higher frequencies the methods are all about the same. The P controller, the 
simplest of the four, is always the worst. 
 

Hint: If 2
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,  plot the magnitude of the frequency response using: 

 
T = tf([2 0],[1 2 10]); 
w = logspace(-1,1.7,1000); 
[M,P]= bode(T,w); 
Mdb = 20*log10(M(:)); 
semilogx(w,Mdb); grid; 
xlabel('Frequency (rad/sec)'); 
ylabel('dB'); 
 
 
 
 
 
 
 
 
 
 
 



Preparation for Lab 8 
 
5) In this problem we are going to be adding a diophantine equation solver to your 
closedloop_driver.m , then reproducing the results from problems 1 and 2 (This solver 
won't work for problem 3, since there are some unusual requirements in that problem.) 
 
a) Download the function solve_diophantine.m from the class web site. 
 
b) Make the plant transfer function the same as in problem 1 and set the input amplitude 
to 0.5. 
 
c) Comment out all of the other controllers, and add the lines 
 
p = [-1+j -1-j -3];      % desired closed loop pole locations 
m = 1;                           % the order of the controller 
 
Gc = solve_diophantine(Gp,p,m); 
if (isempty(Gc)) 
  return; 
end; 
 
d) Set the saturation_level to something like 100, temporarily. 
 
e) Run the code to check your answers for problem 1. Turn in your plot. Be sure to run 
the simulation long enough to reach steady state, and be sure your constant prefilter is set 
correctly to give you a steady state error of 0. 
 
6) Modify the code to duplicate the results from problem 2.  Run the code and check your 
answers for both parts of problem 2. Turn in your plots. Again use an input amplitude of 
0.5. Be sure to run the simulation long enough to reach steady state, and be sure your 
constant prefilter is set correctly to give you a steady state error of 0. 
 
  



7) You will be using this code and the following designs in Lab 8, so come prepared! 
 
a) Get the state variable model files for one rectilinear (model 210) or one rotational 
(model 205) system you modeled in lab (only one of the 1 dof systems). Since you will be 
implementing these controllers during lab 8, if you have any clue at all you and your lab 
partner will do a different system! 
 
You will need to have closedloop_driver.m load the correct state model into the system! 
 
b) Design a type 0 controller for your rectilinear (Model 210) or torsional (Model 205) 
system using the Diophantine equation method. You need to set the saturation_level to 
the correct level. You will need to choose the closed loop pole locations (This is a guess 
and check sort of thing. The biggest problem is making sure the control effort is not too 
large.) Your resulting design must have a settling time of 0.6 seconds or less and must 
have a percent overshoot of 25% or less. You should use a 1 cm step or a 15 degree step 
input (be sure to convert to radians). Your design should not saturate the system (control 
effort), your controller must be stable, and you should use a constant prefilter. Note that 
your system may do strange things, like starting off in the negative direction. That’s ok as 
long as you meet the constraints. 
  
c) Run your simulation for 2.0 seconds. Plot both the system output (from 0 to 2 second) 
and the control effort (from 0 to 0.2 seconds). Plot the control effort only out to 0.2 
seconds since the control effort is usually largest near the initial time. If your control 
effort reaches its limits, you need to go back and modify your design. Turn in your plot 
and your controller (you can just write this on your plot). 
 
d) Modify your design from part b to implement a type 1 controller, with all other 
conditions the same (you may have to modify the closed loop pole locations). The 
prefilter should be a constant and the controller should be stable. Turn in your plot. 
 
e) (Potentially Tricky!) Modify your design from part d to use a dynamic prefilter, as you 
did in the last homework. Here the denominator of the prefilter is the numerator of the 
closed loop transfer function, and the numerator is set for a steady state error of zero 
(Think!) Turn in your plot, your controller, and your prefilter (you can write the 
controller and prefilter on the graph). The prefilter must be stable, hence the numerator 
must have all of its zeros in the LHP.  You may have to modify your pole locations from 
part d.  For my systems, I had some complex conjugate poles with imaginary parts larger 
than the real parts, but this may not help you. You will probably need to iterate here.   
 
 
Turn in your code and your plots. 
 


