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Second Order System Properties 
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Model Matching 
 
Assume we have a proper plant ( ) ( ) / ( )pG s N s D s=  and we want the closed loop system 
to have the transfer function 0 0( ) ( ) / ( )oG s N s D s= . We can find a controller  
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under the following conditions: 
 

• degree - degree  degree - degree  0 ( )D s 0 ( )N s ≥ ( )D s ( )N s
• The right half plane zeros of  are retained in  ( )N s 0 ( )N s
• is stable 0 ( )G s

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Quadratic Optimal Control 
 
Consider a plant with a proper transfer function  
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 where 
• and have no common factors ( )N s ( )D s
• The leading coefficient of  is 1 (the coefficient of the highest power of s in 

is 1) 
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An implementable closed loop transfer function that minimizes the performance index 0 ( )G s
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Controller Types 

 
 Proportional (P),  ( )cG s k=

 Integral (I), ( )cG ks
s
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 Proportional + Integral (PI), ( )( )c
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Diophantine Equations 
 
 For plant , controller ( ) ( ) / ( )pG s N s D s= ( ) ( ) / ( )cG s B s A s= , and desired characteristic 
Polynomial  we will have to solve the equation0 ( )D s 0( ) ( ) ( ) ( ) ( )A s D s B s N s D s+ =  
This is called the Diophantine equation. We solve this equation by equating powers of s, 
setting up a system of equations, and then solving. The closed-loop transfer function 
will be 

0
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where ( )B s  contains the zeros we have added to the system. 
 
Theorem (Strictly Proper Plant) Assume we have a strictly proper order plant 
transfer function, . Since is strictly proper we have the degree 

of < the degree of . Since  is  order the degree of . Assume 
also that  and  have no common factors. Then for any polynomial  of 
degree n  a proper controller 

thn
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( )D s G
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D( )N s
m+

0 ( )s
(B=  of degree m exists so that the 

characteristic polynomial of the resulting closed-loop system is equal to  . 0 ( )D s
If , the controller is unique. If  , the controller is not unique and some of 
the coefficients can be used to achieve other design objectives. 
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Theorem (Special case: degree  = degree ) Assume we have a  proper  
order plant transfer function, 
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( ) /N s= , where the degree of  ( )D s

= degree  = n. Assume also that  and  have no common factors. Then for 
any polynomial  of degree

( )N s ( )N s
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0 ( )D s n +  a proper controller ( ) ( ) / ( )cG s B s A s=  of degree m 
exists so that the characteristic equation of the resulting closed-loop system is equal to

. If , and the controller is chosen to be strictly proper, the controller is 
unique. If , the controller is not unique and some of the coefficients can be used 
to achieve other design objectives. 
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Root Locus Construction 
 
Once each pole has been paired with a zero, we are done 

 
 1. Loci Branches 

0k k
p zer soles o
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 Continuous curves, which comprise the locus, start at each of the n poles of for 
which . As k approaches  , the branches of the locus approach the m zeros of  

. Locus branches for excess poles extend to infinity. 
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The root locus is symmetric about the real axis. 

  
2. Real Axis Segments 

 
The root locus includes all points along the real axis to the left of an odd number of poles 
plus zeros of . ( )G s

 
3. Asymptotic Angles 

 
As $k , the branches of the locus become asymptotic to straight lines with angles k →∞
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until all ( n ) angles not differing by multiples of are obtained. n is the number of 
poles of and m is the number of zeros of . 

m−
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360o
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4. Centroid of the Asymptotes 
 

The starting point on the real axis from which the asymptotic lines radiate is given by 
i ji j
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where ip  is the  pole of , thi ( )G s jz  is the thj zero of , n is the number of poles of

 and m is the number of zeros of . This point is termed the centroid of the 
asymptotes. 
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5. Leaving/Entering the Real Axis 
 

When two branches of the root locus leave or enter the real axis, they usually do so at 
angles of . 90o±

 



Frequency Domain Phase Lead  
 
Consider the following feedback system 
 
 

( )G s

 

 
 
 
 
 
 
 
The primary function of the phase lead compensator is to reshape the frequency response 
curve to add phase to the system, thereby increasing the phase margin. This usually 
results in an increased bandwidth, and hence a faster response time. 
 

Basic Procedure 
 
1) Assume the phase lead compensator has the form 

1
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α
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Determine K  to satisfy any steady state error requirements. 
 
2) Using the value of K determined in step 1, draw the Bode plot of ( ) ( )KG s H s . 
 
3) Determine the necessary phase to be added to the system to achieve the desired phase 
margin. Add an additional 5  to 12  to the necessary phase to account for the fact that the 
phase lead compensator shifts the gain crossover frequency to the right and decreases the 
phase margin. The total phase we need to add is 

o o

mφ . 
 

4) Determine α  using the relationship 1 sin( )
1 sin( )

m

m
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φ
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+
. α  should be larger than 0.05, or 

you need two or more compensators in series.  
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5) Determine the frequency mω at which  
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This is the new gain crossover frequency 1
m T

ω
α

= . Since we know mω and α , we can 

compute 1

m
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6) Determine the pole and zero of the compensator 1z
T

= and 1 1p
T α

=  

 

7) Determine c
KK
α

=  

 
8) Check the phase margin to see if it is acceptable. We will use sisotool. 
 
 
When you use sisotool to tweak your compensators, you should  
 
1) enter the transfer function for  ( ) ( )G s H s
 
2) instruct sisotool to use the Natural Frequency or Time Constant  method of displaying 
the controller. To do this  
 
edit → sisotool preferences →options 
and select Natural Frequency or Time Constant 
 
3)  enter the pole and zero of the compensator 
 
4) Set the gain to be K, the required gain for the steady state errors. This gain cannot 
change! 
 
5) Play with the pole and/or zero to get the required phase margin 
 
 

 
 
 
 
 
 
 



Laplace Transforms 
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