ECE-320: Lab 1
Simulink, Matlab and the ECP Model 205 and 210 Systems

There are three basic goals to this lab:

1) Review (or learn for the first time) some basic Simulink and Matlab commands. Due
to the fact the Simulink drivers for the ECP system are for Matlab R2008a, you must use
Matlab R2008a in the lab. The Matlab/Simulink files you generate today will be the
basis for much of the work we do in lab this quarter, and you will utilize them regularly
in your homework.

2) Learn to compute transfer functions for open and closed loop systems and extract
information.

3) Learn to connect and operate the ECP model 210 (rectilinear system) and model 205
(torsional system)

Part 1: Some background Matlab commands:

poly If we want to construct a polynomial with roots at -1 and -2, we type the command
y = poly([-2 -1])

Matlab will respond with the array [1 3 2], which corresponds to the polynomial

s?+3s+2=(s+2)(s+1)
2
tf To construct the transfer function G, (s) = ﬁ
S

we type into Matlab:
Gp=tf([132],[1000])

pole and zero To find the poles or zeros of a transfer function, we use the pole or zero
command

pole(Gp)
zero(Gp)

minreal This command eliminates common poles and zeros from transfer functions.
There is an optional argument (tol) that let's you specify how close the pole/zeros are to
each other before you decide they are really equal. To utilize this command, you would

type
G = minreal(G);

tfdata Sometimes we need to extract the numerator and denominator from the transfer
function. This is particularly true when trying to implement a transfer function in
Simulink, which expects a numerator and denominator. To do this we use the tfdata
command, as follows:

[num_G,den_G] = tfdata(G,'v');

Sometimes we want to know the value of a transfer function G(s) whens — 0.To do this
in Matlab, and assign the value to a variable final, type

final = num_G(end)/den_G(end);

feedback This is a useful command when we want Matlab to determine the closed loop
transfer function for a system with the configuration shown below.

R(s) Y(s)
G,(s)

> Gpre (S) —p + — GC (S)

H() |«— |

This is the type of configuration we will be utilizing extensively in this class. To find the
transfer function from the input R(s) to the output Y(s), we would type

Go = Gpre*feedback(Gc*Gp,H);

Note that this command may not clean up pole/zero cancellations, and we may need to
utilize minreal after this command. If any of these elements is not present, set that value
toal.

axis Sometimes we want the axes of one particular graph to be different than the other
graphs on a page, or we want to examine something up close. To do this we utilize the
axis command as follows:

axis([min_x_value max_x_value min_y value max_y value]);

This limits the range of the x-axis from min_x_value to max_x_value, and limits the
range of the y-axis from min_y_value to max_y value.

Part 2a: Open loop transfer functions.

An open loop system is generally any system where the output is not compared to the
input. A simple transfer function is an example of an open loop system:

y
ve G, (s) Y

Here U (s) is the input, Y (s) is the output, and G (s) is a mathematical model of the

plant or the thing we are trying to control. We can also cascade transfer functions, as
follows:

Y
ROl 6 VO, G, (s) _®

Here we have added a transfer function for the controller, G_(s) . This is still an open

loop system since we are not comparing the output to the input. The transfer function
between the input R(s) and the output Y (s) is the product of G_(s) and G (s) . Hence
Y(8)

R~ G, ()G, (s) =G,(s)

In this course we typically write the transfer function from input to output asG,(s) .

For you to do:

a) Compute the open loop transfer functions for the following two systems by hand
b) Compute the open loop transfer functions for the following two systems using

Matlab. Be sure to use the_minreal command to eliminate pole/zero cancellations.
c) Determine G,(0) for both of the following systems by hand and using Matlab.

R(s) s+1 S+2 Y (9)
—> > —
S+2 s+3
S | s+2
s+1 1 s+l

Attach your work to the end of your memao.

Part 2b: Closed loop transfer functions.

A closed loop system is generally any system where the output is compared to the input.
A typical closed loop control system is shown below. Generally the difference between
the input and output is referred to as an error signal, E(s) , and this error signal is input to

the controller, G, (s), which then generates the input U (s) to the plant, G (s).

Sometimes, in order to compare the output to the input (which may be in different units),
the output signal is modified by a conditioning transfer function, H(s) .

R(s) E(s) Us) Y(s)

— —» G,(s) G,(s)

»
—p

H (s)

The (closed loop) transfer function between the input and output is given by

Y0O) g (5 G806,
R(s) ° 1+ H(s)G, (s)G, (s)
We will use this formula a great deal in this class, so the sooner you learn it, the better off
you’ll be (we will derive it in a week or so).

Sometimes we include a prefilter, G (s), a transfer function after the input and outside
of the feedback loop, to modify the transient and steady state behavior.

R(s) E(s) u(s) Y(s)

—> Gpre (S) —> Gc (S)

G,(s)

[
—>

H(s)

The transfer function for this system is

YO _g (s) = G (8)G, ()G, (5)
R(s) ° 7 1+H(s)G,(5)G,(s)

For you to do:

a) Assuming the value of the prefilter is 1, compute the closed loop transfer functions

for the following two systems by hand

b) Assuming the value of the prefilter is 1, compute the closed loop transfer functions

for the following two systems using Matlab. Be sure to use the minreal command to

eliminate pole/zero cancellations.

c) Determine, by hand, the (constant) value of the prefilter so that G,(0) =1.
d) Determine, using Matlab, the (constant) value of the prefiler so that G,(0) =1.

G 1 R s+1 -
' pre [~ s g S+2
G S+3 R s+1 -
- pre [~ ' s+1 S+2

Attach your work to the end of your memo.

Part 3a - Open Loop Response

The first thing we will look at in this lab is the open loop response of a system. Here we
basically assume we have the transfer function of some type of system. This system is
usually referred to as the plant, and we are trying to improve on the response of the plant.

a) Create a folder for your work. I would suggest making a folder in the ECE-320 folder
which identifies you and your lab partner, and then within this folder make a folder
entitled something creative like Lab 1.

b) Open Matlab and set the directory to this folder. Do not dump your stuff in the work
(default) directory.

¢) Go to the class website (~throne) and download openloop_driver.m (Matlab driver
file) , openloop.mdl (Simulink model file), and state_model_1dof.mat.

The Simulink file for the open-loop system should look like the following:

@—. m_time m_u
Clodk To Wokspace? To Wokspace
num_=pls)
> — My
den_Gpls)
Input Saturation Flant To Waonkspace

In this case, all of the things we are saving (to plot later) have the prefix m, such as
m_time, m_u, and m_y. This is so we can (in future labs) compare the response of the
model (the m things) with the response of the_real system.

Before we go on, we should review a few of the important pieces of the Simulink file.

All of the items begin saved to the workspace that we want to be able to plot later, like
m_time, look like the following:

L] Sink Block Parameters: To Workspace2
To Workspace

Write input to specified array or skruckure in MATLAE's main workspace, Data is not
available until the simulation is stopped of paused.

Parameters

‘ariable name:

.t |
Limit: data points to last;

|inF |

Decimation:

L |
Sample time {-1 Far inherited);

E |
Save format: |.0.rrav This should
say Array

] Log fixed-point data as an fi objeck

[ok] [Cancel] ’ Help Apply

Note in particular that we are saving this data as an_array.

The saturation levels are determined by the ECP device, are coded into the Matlab driver,
and are set using the following window (you shouldn't have to change this):

2] Function Block Parameters: Saturation

Sakuration

Limnit input signal to the upper and lower saturation values,

fain | Signal attributes

Upper limit;

| saturation_level |

Lowser linit:

|-saturati0n_level |

Treat as gain when linearizing
Enable zero crossing detection
Sample time (-1 For inherited):

-1

oK] l Cancel] l Help Apply

The (plant) transfer function is determined in Matlab, and is entered into the Simulink
model as:

We need
tfdata to get
these pieces

5] Function Block Parameters: Plant

Transfer Fon

The numerator coefficient can be a vector or matrix expression, The

coefficient must be a vectaor, The output width equals the numb ws in the
numetator coefficient, You should specify the coefficients jp €nding order of
powers of s,
Parameters

Mumerator coefficiant:
) e |

Denominator coefficient:
|c|en_Gp |

Absolute tolerance:

|autn |

State Mame: {e.g., 'position”)

oK] l Cancel] [Help Apply

The system input is determined in Matlab, and is entered into the Simulink model by

=1 source Block Parameters: Input

Skep
Oukput a step,
Parameters

Skep time:

E |
Initial value:

0 |

Final walue:

|.ﬁ.m|:| |

| We are

Saiirgle st controlling

o | the amplitude
Interpret vector parameters as 1-0 of the step in
Enable zera crossing detection Matlab

oK l [Cancel] [Help

The length of time to run the simulation is also determined by Matlab, and is set in either
the Simulink window (shown below) or the Simulation Configuration Parameters section

This is the length of time to run
the simulation for.

o penloop
File:

[

Edit Yiew Simulation Format Tools Help

=EHE X 3 Tf Mormal

@-p m_time m_u
Cladk To Waokspace? To Wotkspaced
r—a
num_t=pis)
> — e m_y
den_Gpls)
- —
Input Saturation Flant To Wokspace
Ready 100%: oded5

Finally, to run the simulation, open openloop_driver.m and click on the play arrow:

B Editor - C:,Documents and Settings'.throne',My Documents'ECE-320'Fall 2009',Labs',Lab1' openloop_dr =101 x|
File Edit Text Go Cell Tools Cebug Deskiop Window Help u | A X
Eﬂlﬁg|*%@q{‘|&!;§?'Hﬁ*f“,|%]v@ﬁ@%@@@htach:l%sevl IDYI
BB -0+ | 2l x| @
s 3 ZD
4 % put in some stuff for the ECP systems
5] % this sets the wvalue of the limiter
& L pomement out the one you don't need Click here to run
! s Simulink
g — saturation lewvel = 1000/2196; % for ECP zZ10
&= saturation level = 1000/ 2546:; % for ECP 205
10 %
11 % now load the plant model
12 % the model is in state space form and we need to
13 % convert it to transfer function form
14 % don't worry asbout this for now
15 %
lg — load state_model ldof
17 — C = [10]:
18 — [num Go.den Gol = ss2tf(A.B.C.DV: j

sCripk

ln 25 ol 52 [0V

If you run the m-file openloop_driver.m, you should get the following plot:

E
=)
=
=
3
[
(W
1.5 I I ! ! ! I I I I
1 ------- T====== h B E ------- E- ------ 'E' ------ o B b B L r===== =
1= ‘ ‘ ‘
= ! -
5 05p----- R - oenees R boeeees doemees LR Foneees AR
E 1 1 : 1 : 1 1 : 1
E OF -t L TTTrEIEEEEEEREEEEEEE Pt =
= 1 1 : 1 : 1 1 : 1
L] ' ' '
_|:|5 _______ Lo e P : _______ [JI. ______ P, R, :_ ______ Leceeo —]
1 | | i | i | | i |
0 0.5 1 1.4 2 24 3 3.5 4 4.5 5

Time (sec)

d) Adjust the input amplitude so that position in steady state is 1cm. Include this plot (and
the corresponding input amplitudes) in your memo. Be sure to label each figure and
provide a caption.

e) By adjusting the input amplitude, can we change the settling time of the system? Can
we change the percent overshoot [(peak-steady state)/steady state times100%]?

This an open loop system, in that the output signal is never compared to the input signal.

10

Part 3b - Closed Loop Control

a) Save your openloop.mdl file as closedloop.mdl. Save your openloop_driver.m as
closedloop_driver.m. Be sure to modify closedloop_driver.m so it runs
closedloop.mdl.

b) Modify closedloop.mdl so it looks like the following:

@—} m_time e m_u

Clock To MWartspace? To MWokspace
num_Ges) num_pisl
Ly L e moy
den_Gos=) den_Gps)
Input Cantraller Saturation Flant Ta Wotkspace

This is a closed loop system, in that we are feeding back the output and comparing this
output to what we wanted the output to be. We have also added a new transfer function,
the controller or compensator, usually denoted as Gc(s).

c) Now we need to try and figure out how to choose our controller. This is one of the
main topics of this course, so at this point I'll just tell you.

Lets assume that we want the closed loop transfer function (the transfer function from
input to output) to be of the form
1

s? +1.8w,5 + @&}
for some @, . To enter this into Matlab, for @, =1we could type something like

Go (3) =

wo =1;
Go = tf(1,[1 1.8*wo wo"2]);

Type this to closedloop_driver.m, before the sim command. We will be varying wo so
leave it a variable.

d) To determine the controller, we need to solve the equation (we will show where this
comes from later in the class)

G0
G, (8)[1-Gy(9)]

G, ()

11

In Matlab we just have to type
Gc = Go/(Gp*(1-Go));

Be sure to eliminate pole/zero cancellations, and extract the numerator and denominator
of the controller transfer function so Simulink can use the controller.

e) If you run closedloop_driver.m with wo =5, Amp =1, and Tf = 2 you should get the
following plot.

0y = 5 radfsec
0.0a T T T T T T T T T

T[S SR S VR AU S N S

CIm

e i e s S
CTi7) ORS¢ S SO MRS S N O S S

Position

0.01f----- A e S bt EECEEETEEPEES e St
0 i i i i i i i i i

Control Effort

0 i i i i i i i i i
a 02 04 0B 08 1 1.2 14 1.6 18 2
Time (sec)

f) Run closedloop_driver.m with wo = 10, 50, and 100. Be sure to vary the final time for
each graph to include only that portion of the graph that is interesting. Include the plots in
your memo. What happens to the settling time as wo is increased? What happens to the
control effort? What happens to the steady state value?

12

g) We now need to fix the final value, or the steady state error. There are many ways to
do this (in this case we could have just modified Go), but we will use a prefilter, since
this is what we will do with many of our controllers. Modify closedloop.mdl so it looks

as follows:

Cl—)—p m_time

Clock

o|m um_ G prels)

Input

L
den_Gpres)

prefilter

To MWotspacez

num_G o=

[

[
-

m_u

To Wiotspace

L um_t>pls)

den_GosE)

Contraller

Lol

Saturation

L
den_Gpl=)

e omy

Flant

Tao Motspace

h) For our system, we need to set the prefilter so the closed loop transfer function has a
value of 1 as s — 0. You should modify closedloop_driver.m to determine the steady
state value of the closed loop transfer function (without the prefilter), and then set the
prefilter gain to one over this. Although it is easy to determine analytically what this
value should be in this case, you need to have Matlab compute it numerically. In this
particular case the prefilter is a constant but we will still implement it as a transfer

function, to keep it general. The denominator of this transfer function should be set to 1.

i) One of the things you will soon notice for a step input is that the control effort is
usually largest just after the step. Since we are mostly concerned about the control effort
at this point in time, modify closedloop_driver.m using the axis command to limit the
time we look at the control effort to be from 0 to 0.1 seconds, no matter how long the
Simulink simulation is run. Because of the limiter, the control signal will always be
between -saturation_level and saturation_level.

13

J) If you have done steps (h) and (i) properly, the steady state value of the output should
be the same as the steady state value of the input. For wo = 10, Amp =1, and Tf = 1.0, the
output of closedloop_driver.m should look as follows:

= 10 radfsec

19 L
E 1_------‘;.------1 ------- :-------:---- J;. 1 1 1 1
= ! .

R ! \
1 R S SN AU SUNIUS SNV AU SN SRS SO .
L : 1 1 1 : 1 1 1 1
q i i i i i i i i i
] 0.1 0.2 0.3 0.4 0.4 06 0.7 0a 0e 1
Time (sec)

I R B B R
R B S s S
L.Llj 1 1 1 1 E 1 1 1 1
= U -k e]
£ e e
5 _|:|2 _______ JI. ______ [e e e e e = [JI. ______ Jmme e e o I P [Lemm e m —

L T """ 1" I [~ T """ 1 1" [~ [~]

] oo Q02 o003 004 005 008 0QOF 0083 009 049
Time (sec)

k) Now run the simulation for wo = 20 and 40 rad/sec. What happens to the settling time?
What happens to the control effort? Be sure to include these plots in your memo.

I) Run closedloop_driver.m again for wo = 50 rad/sec, then for wo = 60 rad/sec. You
should notice that once we hit the limiter we start to get fairly weird behavior. This is
because our system has suddenly become_nonlinear. Whenever we utilize the ECP
system we want to be sure to stay within the linear range, if possible. Include both of
these plots in your memo.

Your final memo should have a short cover page which answers the various questions
that were asked. As attachments you should have each of the plots (these should be
included in the document file), each with a figure number and a caption. You should also
attach your final version of closedloop_driver.m and closedloop.mdl. The last page of
your memo should have the following page signed by the instructor and attached,
verifying you successfully connected to both the ECP model 210 and 205.

14

Part 4a - ECP Model 210

Be sure the connector box (black and gray box on the top of the shelf) is off before
connecting the system. Do not force the connectors. If they don't seem to fit, ask for help!
You need to read through the handout on the real-time windows and the ECP systems,
and use Model210_Openloop.mdl with an input of 0.01sin(4 z t) cm. The instructor
needs to sign below verifying your work.

Verified by

Part 4b - ECP Model 205

Be sure the connector box (black and gray box on the top of the shelf) is off before
connecting the system. Do not force the connectors. If they don't seem to fit, ask for help!
You need to read through the handout on the real-time windows and the ECP systems,
and use Model205_Openloop.mdl with an input of 1sin(4 = t) degrees (Note: The ECP
system works in radians, so you will have to convert this!). The instructor needs to sign
below verifying your work.

Verified by

15

