
Notes for ECE-320

Fall 2004

by
R. Throne

The following pages contain a first attempt at writing notes for ECE-320. The topics we cover
in ECE-320 are not covered in any single book. These notes are not complete, especially the
sections on root locus design and design using Bode plots.

The major sources for these notes are

• Analog and Digital Control System Design, by C. T. Chen. Sanders College Publishing.
1993.

• Linear Control Systems, by Rohrs, Melsa, and Schulz. McGraw-Hill, 1993.

• Modern Control Engineering, by Ogata. Prentice-Hall, 2002.

• Modern Control Systems, by Dorf and Bishop. Prentice-Hall, 2005.

1

Contents

1 Table of Laplace Transforms 4

2 Laplace Transform Review 5
2.1 Poles and Zeros . 5
2.2 Proper and Strictly Proper Transfer Functions 5
2.3 Impulse Response and Transfer Functions . 5
2.4 Partial Fractions with Distinct Poles . 6
2.5 Partial Fractions with Distinct and Repeated Poles 9
2.6 Complex Conjugate Poles: Completing the Square 14
2.7 Complex Conjugate Poles-Again . 19

3 Final Value Theorem 20

4 Step Response and Position Error, Ramp Response and Velocity Error 21
4.1 Step Response and Position Error . 21
4.2 Ramp Response and Velocity Error . 24
4.3 Summary . 27

5 Response of a Ideal Second Order System 28
5.1 Step Response of an Ideal Second Order System 28
5.2 Time to Peak, Tp . 29
5.3 Percent Overshoot, PO . 30
5.4 Settling Time, Ts . 31
5.5 Constraint Regions in the s-Plane . 33
5.6 Summary . 40

6 Characteristic Polynomial, Modes, and Stability 42
6.1 Characteristic Polynomial, Equation, and Modes 42
6.2 Characteristic Mode Reminders . 43
6.3 Stability . 44
6.4 Settling Time and Dominant Poles . 44

7 Basic Feedback Configuration 46

8 Model Matching 47
8.1 ITAE Optimal Systems . 48
8.2 Quadratic Optimal Systems . 49
8.3 Summary and Caveates . 52

9 System Type and Steady State Errors 54
9.1 Review . 54
9.2 System Type For a Unity Feedback Configuration 54
9.3 Position and Velocity Errors . 55
9.4 Examples . 56

2

10 Controller Design Using the Root Locus 59

11 Pole Placement By Matching Coefficients: Diophantine Equations 61
11.1 Theoretical Background . 62
11.2 Pole Placement with Robust Tracking . 65
11.3 Summary . 67

12 System Sensitivity 68
12.1 Sensitivity to Parameter Variations . 68
12.2 Sensitivity to External Disturbances . 73
12.3 Summary . 74

13 State Variables and State Variable Feedback 75
13.1 State Variable to Transfer Function Model . 77
13.2 State Variable Feedback . 80
13.3 Controllability for State Variable Systems . 85
13.4 Summary . 86

14 Controller Design Using Bode Plots 87

15 Linearization 90
15.1 Linear Systems . 90
15.2 Taylor Series . 90
15.3 Linearization Procedure . 91

A Matlab Commands i
A.1 Figures . i
A.2 Transfer Functions . i
A.3 Feedback Systems . ii
A.4 System Response to Arbitrary Inputs . ii
A.5 Changing the Line Thickness . iii
A.6 Poles and Zeros . iv
A.7 Roots and Polynomials . iv
A.8 Root Locus Plots . v
A.9 Bode Plots, Gain and Phase Margins . v

3

1 Table of Laplace Transforms

f (t) F (s)
δ(t) 1

u(t) 1
s

tu(t) 1
s2

tn−1

(n−1)!u(t) (n = 1, 2, 3...) 1
sn

tnu(t) (n = 1, 2, 3, ...) n!
sn+1

e−atu(t) 1
s+a

te−atu(t) 1
(s+a)2

1
(n−1)!t

n−1e−atu(t) (n = 1, 2, 3, ...) 1
(s+a)n

tne−atu(t) (n = 1, 2, 3, ...) n!
(s+a)n+1

sin(bt)u(t) b
s2+b2

cos(bt)u(t) s
s2+b2

e−at sin(bt)u(t) b
(s+a)2+b2

e−at cos(bt)u(t) (s+a)
(s+a)2+b2

4

2 Laplace Transform Review

In this course we will be using Laplace transforms extensively. Although we do not often go
from the s-plane to the time domain, it is important to be able to do this and to understand
what is going on. In what follows is a brief review of some results with Laplace transforms.

2.1 Poles and Zeros

Assume we have the transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. The roots of N(s) are the
zeros of the system, while the roots of D(s) are the poles of the system.

2.2 Proper and Strictly Proper Transfer Functions

The transfer function

H(s) =
N(s)

D(s)

is proper if the degree of the polynomial N(s) is less than or equal to the degree of the poly-
nomial D(s). The transfer function H(s) is strictly proper if the degree of N(s) is less than
the degree of D(s).

2.3 Impulse Response and Transfer Functions

If H(s) is a transfer function, the inverse Laplace transform of H(s) is call the impulse response,
h(t).

L{h(t)} = H(s)

h(t) = L−1{H(s)}

5

2.4 Partial Fractions with Distinct Poles

Let’s assume we have a transfer function

H(s) =
N(s)

D(S)
=

N(s)

D(s)
=

K(s + z1)(s + z2)...(s + zm)

(s + p1)(s + p2)...(s + pn)

where we assume m < n (this makes H(s) a strictly proper transfer function). The poles of
the system are at −p1, −p2, ... − pn and the zeros of the system are at −z1, −z2, ... − zm.
Since we have distinct poles, pi 6= pj for all i and j. Also, since we assumed N(s) and D(s) have
no common factors, we know that zi 6= pj for all i and j.
We would like to find the corresponding impulse response, h(t). To do this, we assume

H(s) =
N(s)

D(s)
= a1

1

s + p1

+ a2
1

s + p2

+ ... + an
1

s + pn

If we can find the ai, it will be easy to determine h(t) since the only inverse Laplace transform
we need is that of 1

s+p
, and we know (or can look up) 1

s+p
↔ e−ptu(t). To find a1, we first

multiply by (s + p1),

(s + p1)H(s) = a1 + a2
s + p1

s + p2

+ ... + an
s + p1

s + pn

and then let s → −p1. Since the poles are all distinct, we will get

lim
s→−p1

(s + p1)H(s) = a1

Similarly, we will get

lim
s→−p2

(s + p2)H(s) = a2

and in general

lim
s→−pi

(s + pi)H(s) = ai

Example 1. Let’s assume we have

H(s) =
s + 1

(s + 2)(s + 3)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s + 1)

(s + 2)(s + 3)
= a1

1

s + 2
+ a2

1

s + 3

Then

a1 = lim
s→−2

(s + 2)
(s + 1)

(s + 2)(s + 3)
= lim

s→−2

(s + 1)

(s + 3)
=
−1

1
= −1

6

and

a2 = lim
s→−3

(s + 3)
(s + 1)

(s + 2)(s + 3)
= lim

s→−3

(s + 1)

(s + 2)
=
−2

−1
= 2

Then

H(s) = −1
1

s + 2
+ 2

1

s + 3

and hence

h(t) = −e−2tu(t) + 2e−3tu(t)

It is often unnecessary to write out all of the steps in the above example. In particular, when
we want to find ai we will always have a cancellation between (s + pi) in the numerator with
the (s + pi) in the denominator. Using this fact, when we want to find ai we can just ignore (or
cover up) the factor (s + pi) in the denominator. For our example above, we then have

a1 = lim
s→−2

(s + 1)

(s + 3)
=
−1

1
= −1

a2 = lim
s→−3

(s + 1)

(s + 2)
=
−2

−1
= 2

where we have covered up the poles associated with a1 and a2, respectively.

Example 2. Let’s assume we have

H(s) =
s2 − s + 2

(s + 2)(s + 3)(s + 4)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
(s2 − s + 2)

(s + 2)(s + 3)(s + 4)
= a1

1

s + 2
+ a2

1

s + 3
+ a3

1

s + 4

Using the coverup method, we then determine

a1 = lim
s→−2

(s2 − s + 2)

(s + 3)(s + 4)
=

8

(1)(2)
= 4

a2 = lim
s→−3

(s2 − s + 2)

(s + 2) (s + 4)
=

14

(−1)(1)
= −14

a3 = lim
s→−4

(s2 − s + 2)

(s + 2)(s + 3)
=

22

(−2)(−1)
= 11

and hence

h(t) = 4e−2tu(t)− 14e−3tu(t) + 11e−4tu(t)

7

Example 3. Let’s assume we have

H(s) =
1

(s + 1)(s + 5)

and we want to determine h(t). Since the poles are distinct, we have

H(s) =
1

(s + 1)(s + 5)
= a1

1

s + 1
+ a2

1

s + 5

Using the coverup method, we then determine

a1 = lim
s→−1

1

(s + 5)
=

1

4

a2 = lim
s→−5

1

(s + 1)
=

1

−4

and hence

h(t) =
1

4
e−tu(t)− 1

4
e−5tu(t)

Although we have only examined real poles, this method is also valid for complex poles, although
there are usually easier ways to deal with complex poles, as we’ll see.

8

2.5 Partial Fractions with Distinct and Repeated Poles

Whenever there are repeated poles, we need to use a different form for the partial fractions for
those poles. This is probably most easily explained by means of examples.

Example 4. Assume we have the transfer function

H(s) =
1

(s + 1)(s + 2)2

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
1

(s + 1)(s + 2)2
= a1

1

s + 1
+ a2

1

s + 2
+ a3

1

(s + 2)2

Example 5. Assume we have the transfer function

H(s) =
s + 1

s2(s + 2)(s + 3)

and we want to find the corresponding impulse response, h(t). To do this we look for a partial
fraction expansion of the form

H(s) =
s + 1

s2(s + 2)(s + 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s + 2
+ a4

1

s + 3

Note that there are always as many unknowns (the ai) as the degree of the denominator polynomial.

Now we need to be able to determine the expansion coefficients. We already know how to do
this for distinct poles, so we do those first.
For Example 4,

a1 = lim
s→−1

1

(s + 2)2
=

1

1
= 1

For Example 5,

a3 = lim
s→−2

s + 1

s2 (s + 3)
=

−1

(−2)2(1)
= −1

4

a4 = lim
s→−3

s + 1

s2(s + 2)
=

−2

(−3)2(−1)
=

2

9

The next set of expansion coefficients to determine are those with the highest power of the
repeated poles.

For Example 4, multiply though by (s + 2)2 and let s → −2,

a3 = lim
s→−2

(s + 2)2 1

(s + 1)(s + 2)2
= lim

s→−2

1

s + 1
= −1

9

or with the coverup method

a3 = lim
s→−2

1

(s + 1)
=

1

−1
= −1

For Example 5, multiply though by s2 and let s → 0

a2 = lim
s→0

s2 s + 1

s2(s + 2)(s + 3)
= lim

s→0

s + 1

(s + 2)(s + 3)
=

1

6

or with the coverup method

a2 = lim
s→0

s + 1

(s + 2)(s + 3)
=

1

6
=

1

6

So far we have:

for Example 4

1

(s + 1)(s + 2)2
=

1

s + 1
+ a2

1

s + 2
− 1

(s + 2)2

and for Example 5

s + 1

s2(s + 2)(s + 3)
= a1

1

s
+

1

6

1

s2
− 1

4

1

s + 2
+

2

9

1

s + 3

We now need to determine any remaining coefficients. There are two common ways of doing
this, both of which are based on the fact that both sides of the equation must be equal for any
value of s. The two methods are

1. Multiply both sides of the equation by s and let s → ∞. If this works it is usually very
quick.

2. Select convenient values of s and evaluate both sides of the equation for these values of s

For Example 4, using Method 1,

lim
s→∞

[
s

1

(s + 1)(s + 2)2

]
= lim

s→∞

[
s

s + 1
+ a2

s

s + 2
− s

(s + 2)2

]

or

0 = 1 + a2 + 0

so a2 = -1.

For Example 5, using Method 1,

lim
s→∞

[
s

s + 1

s2(s + 2)(s + 3)

]
= lim

s→∞

[
a1

s

s
+

1

6

s

s2
− 1

4

s

s + 2
+

2

9

s

s + 3

]

10

or

0 = a1 + 0− 1

4
+

2

9

so a1 = 1
4
− 2

9
= 1

36

For Example 4, using Method 2, let’s choose s = 0 (note both sides of the equation must be
finite!)

lim
s→0

[
1

(s + 1)(s + 2)2

]
= lim

s→0

[
1

s + 1
+ a2

1

s + 2
− 1

(s + 2)2

]

or

1

4
= 1 +

a2

2
− 1

4

so a2 = 2(1
4

+ 1
4
− 1) = −1

For Example 5, using Method 2, let’s choose s = −1 (note that s = 0, s = −2, or s = −3 will
not work)

lim
s→−1

[
s + 1

s2(s + 2)(s + 3)

]
= lim

s→−1

[
a1

1

s
+

1

6

1

s2
− 1

4

1

s + 2
+

2

9

1

s + 3

]

or

0 = −a1 +
1

6
− 1

4

1

9

so a1 = 1
6
− 1

4
+ 1

9
= 1

36

Then for Example 4,

h(t) = e−tu(t)− e−2tu(t)− te−2tu(t)

and for Example 5

h(t) =
1

36
u(t) +

1

6
tu(t)− 1

4
e−2tu(t) +

2

9
e−3tu(t)

In summary, for repeated and distinct poles, go through the following steps:

1. Determine the form of the partial fraction expansion. There must be as many unknowns
as the highest power of s in the denominator.

2. Determine the coefficients associated with the distinct poles using the coverup method.

3. Determine the coefficient associated with the highest power of a repeated pole using the
coverup method.

11

4. Determine the remaining coefficients by

• Multiplying both sides by s and letting s →∞
• Setting s to a convenient value in both sides of the equations. Both sides must remain

finite

Example 6. Assuming

H(s) =
s2

(s + 1)2(s + 3)

determine the corresponding impulse response h(t).

First, we determine the correct form

H(s) =
s2

(s + 1)2(s + 3)
= a1

1

s + 1
+ a2

1

(s + 1)2
+ a3

1

s + 3

Second, we determine the coefficient(s) of the distinct pole(s)

a3 = lim
s→−3

(s2)

(s + 1)2
=

9

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a2 = lim
s→−1

(s2)

(s + 3)
=

1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s2

(s + 1)2(s + 3)

]
= lim

s→∞

[
a1

s

s + 1
+

1

2

s

(s + 1)2
+

9

4

s

(s + 3)

]

or

1 = a1 + 0 +
9

4

or a1 = 1− 9
4

= −5
4
.

Putting it all together, we have

h(t) = −5

4
e−tu(t) +

1

2
te−tu(t) +

9

4
e−3tu(t)

Example 7. Assume we have the transfer function

H(s) =
s + 3

s(s + 1)2(s + 2)2

find the corresponding impulse response, h(t).

12

First we determine the correct form

H(s) =
s + 3

s(s + 1)2(s + 2)2
= a1

1

s
+ a2

1

s + 1
+ a3

1

(s + 1)2
+ a4

1

s + 2
+ a5

1

(s + 2)2

Second, we determine the coefficient(s) of the distinct pole(s)

a1 = lim
s→0

s + 3

(s + 1)2(s + 2)2
=

3

(1)(4)
=

3

4

Third, we determine the coefficient(s) of the highest power of the repeated pole(s)

a3 = lim
s→−1

s + 3

s (s + 2)2
=

2

(−1)(1)
= −2

a5 = lim
s→−2

s + 3

s(s + 1)2
=

1

(−2)(1)
= −1

2

Fourth, we determine any remaining coefficients

lim
s→∞

[
s

s + 3

s(s + 1)2(s + 2)2

]
= lim

s→∞

[
3

4

s

s
+ a2

s

s + 1
− 2

s

(s + 1)2
+ a4

s

s + 2
− 1

2

s

(s + 2)2

]

or

0 =
3

4
+ a2 + a4

We need one more equation, so let’s set s = −3

lim
s→−3

[
s + 3

s(s + 1)2(s + 2)2

]
= lim

s→−3

[
3

8

1

s
+ a2

1

s + 1
− 2

1

(s + 1)2
+ a4

1

s + 2
− 1

2

1

(s + 2)2

]

or

0 = −1

4
− a2

1

2
− 1

2
− a4 − 1

2

This gives us the set of equations

[
1 1
1
2
−1

] [
a2

a4

]
=

[−3
4
5
4

]

with solution a2 = 1 and a4 = −7
4
. Putting it all together we have

h(t) =
3

4
u(t) + e−tu(t)− 2te−tu(t) +

−7

4
e−2tu(t)− 1

2
te−2tu(t)

13

2.6 Complex Conjugate Poles: Completing the Square

Before using partial fractions on systems with complex conjugate poles, we need to review one
property of Laplace transforms:

if x(t) ⇔ X(s), then e−atx(t) ⇔ X(s + a)

To show this, we start with what we are given:

L{x(t)} =
∫ ∞

0
x(t)e−stdt = X(s)

Then

L{e−atx(t)} =
∫ ∞

0
e−atx(t)e−stdt =

∫ ∞

0
x(t)e−(s+a)tdt = X(s + a)

The other relationship we need are the Laplace transform pairs for sines and cosines

cos(bt)u(t) ⇔ s

s2 + b2

sin(bt)u(t) ⇔ b

s2 + b2

Finally, we need to put these together, to get the Laplace transform pair:

e−at cos(bt)u(t) ⇔ s + 1

(s + a)2 + b2

e−at sin(bt)u(t) ⇔ b

(s + a)2 + b2

Complex poles always result in sines and cosines. We will be trying to make terms with complex
poles look like these terms by competing the square in the denominator.

In order do get the denominators in the correct form when we have complex poles, we need to
compete the square in the denominator. That is, we need to be able to write the denominator
as

D(s) = (s + a)2 + b2

To do this, we always first find a using the fact that the coefficient of s will be 2a. The we use
whatever is needed to construct b. A few example will hopefully make this clear.

Example 8. Let’s assume

D(s) = s2 + s + 2

and we want to write this in the correct form. First we recognize that the coefficient of s is 1,
so we know 2a = 1 or a = 1

2
. We then have

D(s) = s2 + s + 2 = (s +
1

2
)2 + b2

14

To find b we expand the right hand side of the above equations, and then equate powers of s:

D(s) = s2 + s + 2 = (s +
1

2
)2 + b2 = s2 + s +

1

4
+ b2

clearly 2 = b2 + 1
4
, or b2 = 7

4
, or b =

√
7

2
. Hence we have

D(s) = s2 + s + 2 = (s +
1

2
)2 +

(√
7

2

)2

and this is the form we need.

Example 9. Let’s assume

D(s) = s2 + 3s + 5

and we want to write this in the correct form. First we recognize that the coefficient of s is 3,
so we know 2a = 3 or a = 3

2
. We then have

D(s) = s2 + 3s + 5 = (s +
3

2
)2 + b2

To find b we expand the right hand side of the above equations, and then equate powers of s:

D(s) = s2 + 3s + 5 = (s +
3

2
)2 + b2 = s2 + 3s +

9

4
+ b2

clearly 5 = b2 + 9
4
, or b2 = 11

4
, or b =

√
11
2

. Hence we have

D(s) = s2 + 3s + 5 = (s +
3

2
)2 +

(√
11

2

)2

and this is the form we need.

Now that we know how to complete the square in the denominator, we are ready to look at
complex poles. We will start with two simple examples, and then explain how to deal with more
complicated examples.

Example 10. Assuming

H(s) =
1

s2 + s + 2

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
1

(s + 1
2
)2 +

(√
7

2

)2

15

This almost has the form we want, which is

e−at sin(bt)u(t) ⇔ b

(s + a)2 + b2

However, to use this form we need b in the numerator. To achieve this we will multiply and
divide by b =

√
7

2

H(s) =
1

(s + 1
2
)2 +

(√
7

2

)2

=
1
√

7
2

√
7

2

(s + 1
2
)2 +

(√
7

2

)2

or

h(t) =
2√
7
e−

1
2
t sin(

√
7

2
t)u(t)

Example 11. Assuming

H(s) =
s

s2 + 3s + 5

and we want to find the corresponding impulse response h(t). In this simple case, we first
complete the square, as we have done above, to write

H(s) =
s

(s + 3
2
)2 +

(√
11
2

)2

This almost has the form we want, which is

e−at cos(bt)u(t) ⇔ (s + a)

(s + a)2 + b2

However, to use this form we need s + a in the numerator, not just s To achieve this we will
add and subtract a = 3

2
in the numerator

H(s) =
s + 3

2
− 3

2

(s + 3
2
)2 +

(√
11
2

)2

=
s + 3

2

(s + 1
2
)2 +

(√
11
2

)2 −
3
2

(s + 1
2
)2 +

(√
11
2

)2

The first term is now what we want, and will produce a term of the form

e−
3
2
t cos(

√
11

2
t)u(t)

16

The second term needs some work. It looks like a sine times a decaying exponential, but the
scaling is wrong. Again, to put this term in the correct form we will multiply and divide by

√
11
2

H(s) =
s + 3

2

(s + 1
2
)2 +

(√
11
2

)2 −
3

2

1
√

11
2

√
11
2

(s + 1
2
)2 +

(√
11
2

)2

which gives

h(t) = e−
3
2
t cos(

√
11

2
t)u(t)− 3√

11
e−

3
2
t sin(

√
11

2
t)u(t)

Note that it is possible to combine the sine and cosine terms into a single cosine with a phase
angle, but we will not pursue that here.

The examples we are done so far only contain complex roots. In general we need to be able
to deal with systems that have both complex and real roots. Since we are dealing with real
systems in this course, all complex poles will occur in complex conjugate pairs. Hence when we
have complex poles we will look for quadratic factors of the general form

cs + d

s2 + +es + d

Note that there are two unknown coefficients in this term. Since we need as many unknowns
as the highest power of s in the denominator, and this term has 2 powers of s, we need two
unknowns. We are now ready to do one more example.

Example 12. Assuming

H(s) =
1

(s + 2)(s2 + s + 1)

and we want to determine the corresponding impulse response h(t). First we need to find the
correct form for the partial fractions

H(s) =
1

(s + 2)(s2 + s + 1)
= a1

1

s + 2
+

a2s + a3

s2 + s + 1

Note that we have three unknowns since the highest power of s in the denominator is 3. Since
there is an isolated pole at -2, we find coefficient a1 first using the coverup method

a1 = lim
s→−2

1

(s2 + s + 1)
=

1

(−2)2 + (−2) + 1
=

1

3

To find a2, let’s use our trick of multiplying by s and letting s →∞

lim
s→∞

[
s

1

(s + 2)(s2 + s + 1)

]
= lim

s→∞

[
1

3

s

s + 2
+

a2s
2 + a3s

s2 + s + 1

]

17

or

0 =
1

3
+ a2

so a2 = −1
4
. Now we have to find a3 and the only trick we have left is choosing a value of s. For

this particular transfer function, s = 0 is a good choice

lim
s→0

[
1

(s + 2)(s2 + s + 1)

]
= lim

s→0

[
1

4

1

s + 2
+

a2s + a3

s2 + s + 1

]

or

1

3
=

1

6
+ a3

or a3 = 1
3
. So far we have

H(s) =
1

3

1

s + 2
+

−1
3
s + 1

3

s2 + s + 1

The first term is easy, now we need to work on the second term. First we complete the square
in the denominator

s2 + s + 1 = (s +
1

2
)2 +

(√
3

2

)2

so we have

H(s) =
1

3

1

s + 2
+

−1
3
s + 1

3

(s + 1
2
)2 +

(√
3

2

)2

The next thing to do is to add and subtract 1
2
, so the numerator has the correct form so we have

H(s) =
1

3

1

s + 2
+
−1

3
(s + 1

2
− 1

2
) + 1

3

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
+
−1

3
(s + 1

2
) + (1

6
+ 1

3
)

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
+

−1
3
(s + 1

2
) + 1

2

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1

2

1

(s + 1
2
)2 +

(√
3

2

)2

Finally, we have to scale the final term to put it into the correct form

H(s) =
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1

2

1
√

3
2

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

=
1

3

1

s + 2
− 1

3

(s + 1
2
)

(s + 1
2
)2 +

(√
3

2

)2 +
1√
3

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

18

So we finally have

h(t) =
1

3
e−2tu(t)− 1

3
e−

1
2
t cos(

√
3

2
t)u(t) +

1√
3
e−

1
2
t sin(

√
3

2
t)u(t)

2.7 Complex Conjugate Poles-Again

It is very important to understand the basic structure of complex conjugate poles. For a system
with complex poles at −a±bj, the characteristic equation (denominator of the transfer function)
will be

D(s) = [s− (−a + jb)][s− (−a− jb)]

= [s + (a− jb)][s + (a + jb0]

= s2 + [(a− jb) + (a + jb)]s + (a− jb)(a + jb)

= s2 + 2as + a2 + b2

= (s + a)2 + b2

We know that this form leads to terms of the form e−at cos(bt)u(t) and e−at sin(bt)u(t). Hence
we have the general relationship that complex poles at −a ± jb lead to time domain functions
that

• decay like e−at (the real part determines the decay rate)

• oscillate like cos(bt) or sin(bt) (the imaginary part determines the oscillation frequency)

These relationships relating the imaginary and real parts of the poles with corresponding time
domain functions is very important to remember.

19

3 Final Value Theorem

The final value theorem for Laplace transforms can generally be stated as follows:
If Y (s) has all of its poles in the open left half plane, with the possible exception of a single pole
at the origin, then

lim
t→∞ y(t) = lim

s→0
sY (s)

provided the limits exist.

Example 1. For y(t) = e−atu(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at = 0

lim
s→0

Y (s) = lim
s→0

s
1

s + a
= lim

s→0

s

s + a
= 0

Example 2. For y(t) = sin(bt)u(t) we have

lim
t→∞ y(t) = lim

t→∞ sin(bt)

lim
s→0

Y (s) = lim
s→0

s
b

s2 + b2
= lim

s→0

sb

s2 + b2
= 0

Clearly limt→∞ y(t) 6= lims sY (s). Why? Because the final value theorem is not valid since Y (s)
has two poles on the jω axis.

Example 3. For y(t) = u(t) we have

lim
t→∞ y(t) = lim

t→∞u(t) = 1

lim
s→0

Y (s) = lim
s→0

s
1

s
= lim

s→0

s

s
= 1

Example 4. For y(t) = e−at cos(bt)u(t) with a > 0 we have

lim
t→∞ y(t) = lim

t→∞ e−at cos(bt)u(t) = 0

lim
s→0

Y (s) = lim
s→0

s
(s + a)

(s + a)2 + b2
= lim

s→0

s(s + a)

(s + a)2 + b2
= 0

We will use this final value theorem a great deal in this course.

20

4 Step Response and Position Error, Ramp Response

and Velocity Error

In control systems, we are often most interested in the response of a system to the following
types of inputs

• a step

• a ramp

• a sinusoid

Although in reality control systems have to respond to a large number of different inputs, these
are usually good models for the range of input signals a control system is likely to encounter.

4.1 Step Response and Position Error

The step response of a system is the response of the system to a step input. In the time domain,
we compute the step response as

y(t) = h(t) ? Au(t)

where A is the amplitude of the step and u(t) is the unit step function and ? is the convolution
operator. In the s domain, we compute the step response as

Y (s) = H(s)
A

s
y(t) = L−1{Y (s)}

The position error, ep, is the difference between the input step and the resulting response as
t →∞,

ep = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

Example 1. Consider the system with transfer function H(s) = 4
s2+2s+5

. Determine step re-
sponse and position error for this system.

First we find the step response,

Y (s) =
4

s2 + 2s + 5

A

s
= a1

1

s
+

a2s + a3

(s + 1)2 + 22

= A

[
4

5

1

s
−

4
5
s + 8

5

(s + 1)2 + 22

]

= A

[
4

5

1

s
−

4
5
(s + 1)

(s + 1)2 + 22
− 2

5

2

(s + 1)2 + 22

]

21

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Input
Output

position error = 0.2

Figure 1: The unit step response and position error for the system in Example 1.

or

y(t) = A
[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]

Then the position error is

ep = A− lim
t→∞A

[
4

5
u(t)− 4

5
e−t cos(2t)u(t)− 2

5
e−t sin(2t)u(t)

]

= A− 4A

5

=
A

5

The step response and position error of this system are shown in Figure 1 for a a unit step input.

Example 2. Consider the system with transfer function H(s) = 1
(s+1)(s+3)

. Determine step
response and position error for this system.
First we find the step response

Y (s) =
1

(s + 1)(s + 3)

A

s
= a1

1

s
+ a2

1

s + 1
+ a3

1

s + 3

=
A

3

1

s
− A

2

1

s + 1
+

A

6

1

s + 3
or

y(t) = A
[
1

3
u(t)− 1

2
e−tu(t) +

1

6
e−3tu(t)

]

22

Then the position error is

ep = A− lim
t→∞A

[
1

3
u(t)− 1

2
e−tu(t) +

1

6
e−3tu(t)

]

= A− A

3

=
2A

3

Now as much as I’m sure you like completing the square and doing partial fractions, there is an
easier way to do this. We already have learned that if Y (s) has all of its poles in the open left
half plane (with the possible exception of a single pole at the origin), we can use the final value
theorem to find the steady state value of the step response. Specifically,

lim
t→∞ y(t) = lim

s→0
sY (s)

= lim
s→0

s
[
H(s)

A

s

]

= lim
s→0

AH(s)

= AH(0)

and then, for stable H(s) we have

ep = A− AH(0)

where A is the amplitude of the step input (usually A = 1).

Example 3. From Example 1, we compute

ep = A− AH(0)

= A− A
4

5

=
A

5

Example 4. From Example 2, we compute

ep = A− AH(0)

= A− A
1

3

=
2A

3

There is yet another way to compute the position error, which is useful to know. Let’s assume
we write the transfer function as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

We then need to compute

ep = lim
s→0

A[1−H(s)]

23

Let’s write 1−H(s) and put it all over a common denominator. Then we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s + d0)− (nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

=
... + (d2 − n2)s

2 + (d1 − n1)s + (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

Then

ep = lim
s→0

A[1−H(s)]

= A
d0 − n0

d0

Example 5. From Example 1, we have n0 = 4 and d0 = 5, so the position error is ep = A5−4
5

=
A
5
.

Example 6. From Example 2, we have n0 = 1, d0 = 3, so the position error is ep = A3−1
3

= 2A
3

.

4.2 Ramp Response and Velocity Error

The ramp response of a system is the response of the system to a ramp input. In the time
domain, we compute the ramp response as

y(t) = h(t) ? Atu(t)

where A is the amplitude of the step and u(t) is the unit step function. In the s domain, we
compute the step response as

Y (s) = H(s)
A

s2

y(t) = L−1{Y (s)}
The velocity error, ev, is the difference between the input ramp and the resulting response as
t →∞,

ev = lim
t→∞ [Atu(t)− y(t)]

It should be clear that unless y(t) has a term like Atu(t), the ramp response will be infinite.

Example 7. Consider the system with transfer function H(s) = 1
s+1

. Determine the ramp
response and velocity error for this system.

First we find the ramp response

Y (s) =
1

s + 1

A

s2
= a1

1

s
+ a2

1

s2
+ a3

1

s + 1

= A
[
−1

s
+

1

s2
+

1

s + 1

]

24

or

y(t) = A
[
−u(t) + tu(t) + e−tu(t)

]

Then the velocity error is

ev = Atu(t)− lim
t→∞A

[
−u(t) + tu(t) + e−tu(t)

]

= At− At + A

= A

Example 8. Consider the system with transfer function H(s) = s+2
s2+2s+2

. Determine the ramp
response and velocity error for this system.

First we find the ramp response

Y (s) =
s + 2

s2 + 2s + 2

A

s2
= a1

1

s
+ a2

1

s2
+

a3s + a4

s2 + 2s + 2

= A

[
−1

2

1

s
+

1

s2
+

1

2

s

(s + 1)2 + 1

]

= A

[
−1

2

1

s
+

1

s2
+

1

2

s + 1

(s + 1)2 + 1
− 1

2

1

(s + 1)2 + 1

]

or

y(t) = A
[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

Then the velocity error is

ev = Atu(t)− lim
t→∞A

[
−1

2
u(t) + tu(t) +

1

2
e−t cos(t)u(t)− 1

2
e−t sin(t)u(t)

]

= At− At +
1

2
A

=
A

2

The ramp response and velocity error of this system are shown in Figure 2 for a a unit ramp
input. We can try and use the final value Theorem again, but it becomes a bit more complicated.
We want to find

ev = lim
t→∞ [Atu(t)− y(t)]

= lim
s→0

s
[
A

s2
− A

s2
H(s)

]

= lim
s→0

A

s
[1−H(s)]

Let’s assume again we can write the transfer function as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

25

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Input
Output

velocity error = 0.5

Figure 2: The unit ramp response and velocity error for the system in Example 8.

If we compute 1−H(s) and put things over a common denominator, we have

1−H(s) =
(sn + dn−1s

n−1 + ... + d2s
2 + d1s + d0)− (nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

=
... + (d2 − n2)s

2 + (d1 − n1)s + (d0 − n0)

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

and

1

s
[1−H(s)] =

... + (d2 − n2)s
+(d1 − n1) + (d0 − n0)

1
s

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

Now, in order to have ev be finite we must get a finite value as s → 0 in this expression. The
value of the denominator will be d0 as s → 0, so the denominator will be OK. All of the terms
in the numerator will be zero except the last two: (d1− n1) + (d0− n0)

1
s

In order to get a finite
value from these terms, we must have n0 = d0, that is, constant terms in the numerator and
denominator must be the same. This also means that the system must have zero position error
! If the system does not have zero position error, the velocity error will be infinite! If n0 = d0,
then we have

ev = lim
s→0

A

s
[1−H(s)] = A

d1 − n1

d0

Example 9. For the system in Example 7, H(s) = 1
s+1

. Here n0 = d0 = 1, so the system has

zero position error, and n1 = 0, d1 = 1. Hence ev = Ad1−n1

d0
= A.

26

Example 10. For the system in Example 8, H(s) = s+2
s2+2s+2

. Here n0 = d0 = 2, so the system

has zero position error, and n1 = 1, d1 = 2. Hence ev = Ad1−n1

d0
= A

2
.

4.3 Summary

Assume we write the transfer function of a system as

H(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + n1s + n0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

The step response of a system is the response of the system to a step input. The position error,
ep, is the difference between the input and the output of the system in steady state. We can
compute the position error in a variety of ways:

ep = lim
t→∞ [Au(t)− y(t)]

= A− lim
t→∞ y(t)

= A(1−H(0))

= A
d0 − n0

d0

The ramp response of a system is the response of the system to a ramp input. The velocity error,
ev, is the difference between the input and output of the system in steady state. A system has
infinite velocity error unless the position error is zero. We can compute the position error in a
variety of ways:

ev = lim
t→∞ [At− y(t)]

= A
d1 − n1

d0

27

5 Response of a Ideal Second Order System

This is an important example, which you have probably seen before. Let’s assume we have an
ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kstatic ωn

2

s2 + 2ζωns + ω2
n

where ζ is the damping ratio, ωn is the natural frequency, and Kstatic is the static gain. The
poles of the transfer function are the roots of the denominator, which are given by the quadratic
formula

roots =
−2ζωn ±

√
(2ζωn)2 − 4ω2

n

2

= −ζωn ± ωn

√
ζ2 − 1

= −ζωn ± jωn

√
1− ζ2

= −ζωn ± jωd

= −σ ± jωd

= −1/τ ± jωd

where we have used the damped frequency ωd = ωn

√
1− ζ2 and σ = 1

τ
= ζωn. As we start to

talk about systems with more than two poles, it is easier to remember to use the form of the
poles −σ ± ωd or −1/τ ± ωd.

5.1 Step Response of an Ideal Second Order System

To find the step response,

Y (s) = H(s)U(s) =
Kstatic ω2

n

s2 + 2ζωns + ω2
n

1

s

We then look for a partial fraction expansion in the form

Y (s) =
Kstatic ω2

n

s2 + 2ζωns + ω2
n

1

s
= a1

1

s
+

a2s + a3

s2 + 2ζωns + ω2
n

From this, we can determine that a1 = Kstatic, a2 = −Kstatic, and a3 = −2ζωnKstatic. Hence we
have

Y (s) = Kstatic
1

s
−Kstatic

s + 2ζωn

s2 + 2ζωns + ω2
n

Completing the square in the denominator we have

Y (s) = Kstatic
1

s
−Kstatic

s + 2ζωn

(s + ζωn)2 + ω2
d

28

or

Y (s) = Kstatic
1

s
−Kstatic

s + ζωn

(s + ζωn)2 + ω2
d

−Kstatic
ζωn

(s + ζωn)2 + ω2
d

= Kstatic
1

s
−Kstatic

s + ζωn

(s + ζωn)2 + ω2
d

−Kstatic
ζωn

ωd

ωd

(s + ζωn)2 + ω2
d

or in the time domain

y(t) = Kstatic

[
1− e−ζωnt cos(ωdt)− ζωn

ωd

e−ζωnt sin(ωdt)

]
u(t)

We would now like to write the sine and cosine in terms of a sine and a phase angle. To do this,
we use the identity

r sin(ωd + θ) = r cos(ωd) sin(θ) + r sin(ωd) cos(θ)

Hence we have

r sin(θ) = 1

r cos(θ) =
ζωn

ωd

=
ζ√

1− ζ2

Hence

θ = tan−1

(√
1− ζ2

ζ

)

r =
1√

1− ζ2

Note that

cos(θ) =
ζ√

1− ζ2

1

r
=

ζ√
1− ζ2

√
1− ζ2

or θ = cos−1(ζ). Finally we have

y(t) = Kstatic

[
1− 1√

1− ζ2
e−ζωnt sin(ωdt + θ)

]
u(t)

5.2 Time to Peak, Tp

From our solution of the response of the ideal second order system to a unit step, we can compute
the time to peak by taking the derivative of y(t) and setting it equal to zero. This will give us
the maximum value of y(t) and the time that this occurs at is called the time to peak, Tp.

dy(t)

dt
= − Kstatic√

1− ζ2

[
−ζωne

−ζωnt sin(ωdt + θ) + ωde
−ζωnt cos(ωdt + θ)

]
= 0

29

or

ζωn sin(ωdt + θ) = ωd cos(ωdt + θ)

tan(ωdt + θ) =

√
1− ζ2

ζ

θ + ωdt = tan−1

(√
1− ζ2

ζ

)

but we already have θ = tan−1

(√
1−ζ2

ζ

)
, hence ωdt must be equal to one period of the tangent,

which is π. Hence

Tp =
π

ωd

Remember that ωd is equal to the imaginary part of the complex poles.

5.3 Percent Overshoot, PO

Evaluating y(t) at the peak time Tp we get the maximum value of y(t),

y(Tp) = Kstatic

[
1− 1√

1− ζ2
e−ζωnTp sin(ωdTp + θ)

]

= Kstatic

[
1− 1√

1− ζ2
e−ζωnπ/ωd sin(ωd

π

ωd

+ θ)

]

= Kstatic

[
1 +

1√
1− ζ2

e−ζπ/
√

1−ζ2
sin(θ)

]

since sin(θ + π) = − sin(θ). Then sin(θ) =
√

1− ζ2, hence

y(t) = Kstatic

[
1 + e

− ζπ√
1−ζ2

]

The percent overshoot is defined as

Percent Overshoot = P.O. =
y(Tp)− y(∞)

y(∞)
× 100%

For our second order system we have y(∞) = Kstatic, so

P.O. =
Kstatic

[
1 + e

− ζπ√
1−ζ2

]
−Kstatic

Kstatic

× 100%

or

P.O. = e
− ζπ√

1−ζ2 × 100%

30

5.4 Settling Time, Ts

The settling time is defined as the time it takes for the output of a system with a step input
to stay within a given percentage of its final value. In this course, we use the 2% settling time
criteria, which is generally four time constants. For any exponential decay, the general form is
written as e−t/τ , where τ is the time constant. For the ideal second order system response, we
have τ = 1/ζωn or σ = ζωn. Hence for and ideal second order system we estimate the settling
time as

Ts = 4τ =
4

σ
=

4

ζωn

For systems other than second order system we will want to talk about the settling time, hence
the use of the forms

Ts = 4τ =
4

σ

are often more appropriate to remember.

Example 1. Consider the system with transfer function given by

H(s) =
9

s2 + βs + 9

determine the range of β so that Ts ≤ 5 seconds and Tp ≤ 1.2 seconds.

For the transfer function, we see that ωn = 3 and 2ζωn = β, so ζ = β/(2ωn) = β/6. For the
settling time constraint we have

Ts =
4

ζωn

≤ 5

4
β
6
3

≤ 5

8

5
≤ β

so β ≥ 1.60. For the time to peak constraint we have

Tp =
π

ωd

≤ 1.2

π

ωn

√
1− ζ2

≤ 1.2

π

1.2ωn

≤
√

1− ζ2

(
π

1.2ωn

)2

≤ 1− ζ2

ζ2 ≤ 1−
(

π

1.2ωn

)2

ζ ≤
√

1−
(

π

1.2ωn

)2

β ≤ 6

√
1−

(
π

1.2ωn

)2

31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 3: Step response for the system H(s) = 9
s2+2.265s+9

. The settling time should be less than
5 seconds, the time to peak should be less than 1.2 seconds, and the percent overshoot should
be 27.8%.

or β ≤ 2.93. To meet both constraints we need 1.60 ≤ β ≤ 2.93. Let’s choose the average,
so β = 2.265. Then ζ = 0.3775 and the percent overshoot is 27.8%. The step response of this
system is shown in Figure 3.

Example 2. Consider the system with transfer function given by

H(s) =
K

s2 + 2s + K

determine the range of K so that PO ≤ 20o. Is there any value of K so that Ts ≤ 2 seconds?

For the transfer function, we see that ωn =
√

K and 2ζωn = 2, so ζωn = 1 and ζ = 1√
K

. For the

percent overshoot we have b = 20/100 = 0.2 and

e
− ζπ√

1−ζ2 ≤ b

− ζπ√
1− ζ2

≤ ln(b)

− π√
K

1√
1− 1

K

≤ ln(b)

− π√
K − 1

≤ ln(b)

32

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

A
m

pl
itu

de

Figure 4: Step response for the system H(s) = K
s2+2s+K

. The percent overshoot should be less
than or equal to 20% and the settling time should be 4 seconds.

− π

ln(b)
≤

√
K − 1

(
π

ln(b)

)2

≤ K − 1

1 +

(
π

ln(b)

)2

≤ K

Hence we need K ≥ 4.8 to meet the percent overshoot requirement. Now we try to meet the
settling time requirment

Ts =
4

ζωn

≤ 2

but 4
ζωn

= 4
1

= 4. Thus we cannot meet the settling time constraint for any value of K. The
step response of this system for K = 2.8 is shown in Figure 4.

5.5 Constraint Regions in the s-Plane

Sometimes, instead of looking at a transfer function and trying to determine the percent over-
shoot, settling time, or time to peak, we can take the opposite approach and try to determine

33

the region in the s-plane the poles of the system should be located in to achieve a given criteria.
Each one of the three criteria will determine a region of space in the s-plane.

Time to Peak (Tp) Let’s assume we have a minimum time to peak given, Tmax
p , and we want

to know where to find all of the poles that will meet this constraint. We have

Tp =
π

ωd

≤ Tmax
p

we can rearrange this as

π

Tmax
p

≤ ωd

Since we can write the complex poles as −σ ± jωd this means that the imaginary part of the
poles must be greater than π

T max
p

.

Example 3. Determine all acceptable pole location so the time to peak will be less than 2
seconds. We have Tmax

p = 2, so ωd ≥ π
2

= 1.57. The acceptable pole locations are shown in the
shaded region of Figure 5.

Figure 5: Acceptable pole locations for Tp ≤ 2 seconds are shown in the shaded region.

34

Percent Overshoot (P.O.) Let’s assume we have a maximum percent overshoot given, POmax,
and we want to know where to find all of the poles that will meet this constraint. We have

P.O. = e
− ζπ√

1−ζ2 × 100% ≤ POmax

or

e
− ζπ√

1−ζ2 ≤ POmax

100
= b

where we have defined the parameter b = POmax/100 for notational convenience. We need to
first solve the above expression for ζ.

− ζπ√
1− ζ2

≤ ln(b)

ζ√
1− ζ2

≥ − ln(b)

π

ζ2

1− ζ2
≥

(− ln(b)

π

)2

ζ2 ≥
(− ln(b)

π

)2

− ζ2

(− ln(b)

π

)2

ζ2

1 +

(− ln(b)

π

)2

 ≥

(− ln(b)

π

)2

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2

Now we use the relationship

θ = cos−1 (ζ)

In summary, we have

θ ≤ cos−1 (ζ) , ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2
, b =

POmax

100

This angle θ is measured from the negative real axis. Hence an angle of 90 degrees indicates
ζ = 0 and there is no damping (the poles are on the jω axis), while an angle of 0 degrees means
the system has a damping ratio of 1, and the poles are purely real.

35

Example 4. Determine all acceptable pole location so the percent overshoot will be less than
10%. We have b = 0.1, so ζ ≥ 0.59 and θ ≤ 53.8o The acceptable pole locations are shown in
the shaded region of Figure 6.

Figure 6: Acceptable pole locations for Percent Overshoot less than or equal to 10%. The
acceptable pole locations are shown in the shaded region.

36

Example 5. Determine all acceptable pole location so the percent overshoot will be less than
20% and the time to peak will be less than 3 seconds. We have b = 0.2, so ζ ≥ 0.46 and
θ ≤ 62.9o. We also have Tmax

p = 3, so ωd ≥ π
3

= 1.04 The acceptable pole locations for each
constraint are shown in Figure 7. The overlapping regions are the acceptable pole locations to
meet both the percent overshoot and time to peak constraints.

Figure 7: Acceptable pole locations for Percent Overshoot less than or equal to 20% and time
to peak less than or equal to 3 seconds. The acceptable pole locations for each constraint are
shown in the shaded regions. The overlapping regions are those pole locations that will meet
both constraints.

37

Settling Time (Ts) Let’s assume we have a maximum settling time Tmax
s , and we want to

know where to find all of the poles that will meet this constraint. We have

Ts =
4

σ
≤ Tmax

s

or

4

Tmax
s

≤ σ

Since we can write the complex poles as −σ ± jωd this means that the real part of the poles
must be greater (in magnitude) than 4

T max
s

. In other words, the poles must have real parts less

than − 4
T max

s

Example 6. Determine all acceptable pole location so the settling time will be less than 3
seconds. We have Tmax

s = 3, so σ ≥ 4
T max

s
= 4

3
= 1.333. The acceptable pole locations for each

constraint are shown in Figure 8. The overlapping regions are the acceptable pole locations to
meet both the percent overshoot and time to peak constraints.

Figure 8: Acceptable pole locations for settling time less than or equal to 3 seconds. The
acceptable pole locations are shown in the shaded region.

38

Example 7. Determine all acceptable pole location so the settling time will be less than 1
second and the time to peak will be less than or equal to 0.5 seconds. We have Tmax

s = 1, so
σ ≥ 4

T max
s

= 4
1

= 4. We also have Tmax
p = 0.5 so ωd ≥ π

T max
p

= π
0.5

= 6.28. The acceptable pole

locations for each constraint are shown in Figure 9. The overlapping regions (upper left corner,
lower left corner) are the acceptable pole locations to meet both the settling time and time to
peak constraints.

Figure 9: Acceptable pole locations for settling time less than or equal to 1 second and time to
peak less than 0.5 seconds. The acceptable pole locations for each constraint are shown in the
shaded regions. The overlapping regions are those pole locations that will meet both constraints.

39

Example 8. Determine all acceptable pole location so the settling time will be less than 5
seconds, the time to peak will be less than or equal to 2 seconds, and the percent overshoot
will be less than 5%. We have Tmax

s = 5, so σ ≥ 4
T max

s
= 4

5
= 0.8. We also have Tmax

p = 2 so
ωd ≥ π

T max
p

= π
2

= 1.57. Finally, b = 0.05, ζ ≥ 0.69 or θ < 46.4o. The acceptable pole locations

for each constraint are shown in Figure 10. The overlapping regions (two triangular wedges) are
the acceptable pole locations to meet all three constraints.

Figure 10: Acceptable pole locations for settling time less than 5 seconds, time to peak less than
or equal to 2 seconds, and the percent overshoot less than 5%. The acceptable pole locations
for each constraint are shown in the shaded regions. The overlapping regions (two triangular
wedges) are those pole locations that will meet all three constraints.

5.6 Summary

For an ideal second order system with transfer function

H(s) =
Kstatic

1
ωn

2
s2 + 2ζ

ωn
s + 1

=
Kstatic ωn

2

s2 + 2ζωns + ω2
n

the poles are located at −ζωn± jωd, which is commonly written as either −σ± jωd or − 1
τ
± jωd.

We can compute the percent overshoot (PO), the settling time (Ts), and the time to peak (Tp)

PO = e
− ζπ√

1−ζ2 × 100%

40

Ts =
4

ζωn

= 4τ =
4

σ

Tp =
π

ωd

It is important to remember that these relationships are only valid for ideal second order systems!

What is generally more useful to us is to use these relationships to determine acceptable pole
locations to meet the various design criteria. If the maximum desired settling time is Tmax

s , then
all poles must have real parts less than −4/Tmax

s . If the maximum desired time to peak is Tmax
p ,

then the imaginary parts of the dominant poles must have imaginary parts larger than π/Tmax
p ,

or less than −π/Tmax
p (since poles come in complex conjugate pairs). If the maximum percent

overshoot is POmax, then the poles must lie in a wedge determined by θ = cos−1 (ζ) where θ is
measured from the negative real axis and

ζ ≥
− ln(b)

π√
1 +

(− ln(b)
π

)2
, b =

POmax

100

Each of these constraints can be used to define a region of acceptable pole locations for an ideal
second order system. However, they are often used as a guide (or starting point) for higher
order systems, and systems with zeros.

41

6 Characteristic Polynomial, Modes, and Stability

In this section we first introduce the concepts of characteristic polynomial, characteristic equa-
tion, and characteristic modes. You’ll obviously note the word characteristic is used quite a lot
here. Then we utilize these concepts to define stability of our systems.

6.1 Characteristic Polynomial, Equation, and Modes

Consider a transfer function

H(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s with no common factors. D(s) is called the character-
istic polynomial of the system, and the equation D(s) = 0 is called the characteristic equation.
The time functions associated with the roots of the characteristic equation (the poles of the
system) are called the characteristic modes. Some examples will probably help. To determine
the characteristic modes, it is often easiest to think of doing partial fraction expansion and
looking at the resulting time functions.

Example 1. Consider the transfer function

H(s) =
s + 2

s2(s + 1)(s + 3)
= a1

1

s
+ a2

1

s2
+ a3

1

s + 1
+ a4

1

s + 3

Then we have:

Characteristic Polynomial: s2(s + 1)(s + 3)
Characteristic Equation: s2(s + 1)(s + 3) = 0
Characteristic Modes: u(t), tu(t), e−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2tu(t) + a3e
−tu(t) + a4e

−3tu(t)

Example 2. Consider the transfer function

H(s) =
s− 3

s(s + 1)2(s + 3)
= a1

1

s
+ a2

1

s + 1
+ a3

1

(s + 1)2
+ a4

1

s + 3

Then we have:

Characteristic Polynomial: s(s + 1)2(s + 3)
Characteristic Equation: s(s + 1)2(s + 3) = 0
Characteristic Modes: u(t), e−tu(t), te−tu(t), e−3tu(t)

The impulse response is a linear combination of characteristic modes:

h(t) = a1u(t) + a2e
−tu(t) + a3te

−tu(t) + a4e
−3tu(t)

42

Example 3. Consider the transfer function

H(s) =
1

s2 + s + 1
=

1

(s + 1
2
)2 +

(√
3

2

)2

= a1

s + 1
2

(s + 1
2
)2 +

(√
3

2

)2 + a2

√
3

2

(s + 1
2
)2 +

(√
3

2

)2

Then we have:

Characteristic Polynomial: s2 + s + 1
Characteristic Equation: s2 + s + 1 = 0

Characteristic Modes: e−t/2 cos(
√

3
2

t)u(t), e−t/2 sin(
√

3
2

t)u(t)

The impulse response is going to be a linear combination of characteristic modes:

h(t) = a1e
−t/2 cos(

√
3

2
t)u(t) + a2e

−t/2 sin(

√
3

2
t)u(t)

6.2 Characteristic Mode Reminders

There are are few things to keep in mind when finding characteristic modes

• There are as many characteristic modes as there are poles of the transfer function. Each
characteristic mode must be different from the others.

• For any complex poles−σ±jωd, the characteristic mode will be of the form e−σt cos(ωdt)u(t),
and e−σt sin(ωdt)u(t).

• Assume pole pi corresponds to characteristic mode φi(t). If there are two poles at pi, the
characteristic modes associated with pole pi will be φi(t) and tφi(t). If there are three
poles at pi, the characteristic modes associated with pi will be φi(t), tφi(t), and t2φi(t).
If pole pi is repeated n times, the characteristic modes associated with pole pi will be
φi(t), tφi(t), t2φi(t), ... tn−1φi(t)

• The impulse response is a linear combination of the characteristic modes of a system.

Example 4. If a transfer function has poles at −1,−1,−2 ± 3j,−5 ± 2j, the characteris-
tic modes are given by e−tu(t), te−tu(t), e−2t cos(3t)u(t), e−2t sin(3t)u(t), e−5t cos(2t)u(t), and
e−5t sin(2t)u(t).

Example 5. If a transfer function has poles at −2,−2,−2,−3± 2j, −3± 2j, the characteristic
modes are at e−2tu(t), te−2tu(t), t2e−2tu(t), e−3t cos(2t)u(t), e−3t sin(2t)u(t), te−3t cos(2t)u(t),
and te−3t sin(2t)u(t).

43

6.3 Stability

A system is defined to be stable if all of its characteristic modes go to zero as t →∞. A system
is defined to be marginally stable if all of it’s characteristic modes are bounded as t → ∞. A
system is unstable if any of it’s characteristic modes is unbounded as t →∞. There are other
definitions of stability, each with their own purpose. For the systems we will be studying in this
course (generally linear time invariant systems) these are the most appropriate. Note that the
stability of a system is independent of the input.

In determining stability, the following mathematical truths should be remembered

lim
t→∞ tne−at = 0 for all positive a and n

lim
t→∞ e−at cos(ωdt + φ) = 0 for all positive a

lim
t→∞ e−at sin(ωdt + φ) = 0 for all positive a

u(t) is bounded

cos(ωdt + φ) is bounded

sin(ωdt + φ) is bounded

Example 6. Assume a system has poles at −1, 0,−2. Is the system stable?

The characteristic modes of the system are e−tu(t), u(t), and e−2tu(t). Both e−tu(t) and e−2tu(t)
go to zero as t →∞. u(t) does not go to zero, but it is bounded. Hence the system is marginally
stable.

Example 7. Assume a system has poles at −1, 1,−2± 3j. Is the system stable?

The characteristic modes of the system are e−tu(t), etu(t), e−2tu(t), e−2t cos(3t)u(t), and e−2t sin(3t).
All of these modes go to zero as t goes to infinity, except the mode etu(t). This mode is un-
bounded as t →∞. Hence the system is unstable.

Example 8. Assume a system has poles at −1,−1,−2± j,−2± j. Is the system stable?

The characteristic modes of the system are e−tu(t), te−tu(t), e−2t cos(t)u(t), e−2t sin(t)u(t),
te−2t cos(t)u(t), and te−2t sin(t)u(t). All of the characteristic modes go to zero as t goes to
infinity, so the system is stable.

6.4 Settling Time and Dominant Poles

For an ideal second order system, we have already shown that the (2%) settling time is given by

Ts =
1

ζωn

We need to be able to deal with systems with more than two poles. To do this, we first make
the following observations:

44

• We normally write decaying exponentials in the form e−t/τ , where τ is the time constant.
Using the 2 % settling time, we set the settling time equal to four time constants, Ts = 4τ .

• If a system has a real pole at −σ, the corresponding mode is e−σtu(t). Hence the time
constant τ is equal to 1

σ
. The settling time for this pole is then Ts = 4τ = 4 1

σ
.

• If a system has complex conjugate poles at −σ ± jωd, the corresponding modes are
e−σt cos(ωdt)u(t) and e−σt sin(ωdt)u(t). Although these modes oscillate, the settling time
depends on the time constants, which again leads to τ = 1

σ
, and the settling time for this

type of mode is given by Ts = 4 1
σ

Hence, to determine the settling time associated with the ith pole of the system, pi, we compute

T i
s = 4

1

Re{−pi} =
4

σ

where we have written the real part of the pole, Re{−pi}, is equal to σ.

To determine the settling time of a system with multiple poles, determine the characteristic mode
associated with each pole, and the compute the settling time corresponding to that mode. The
largest such settling time is the setting time of the system. The poles associated with the largest
settling time are the dominant poles of the system.

Example 9. Assume we have a system with poles at −5,−4,−3± 2j. Determine the settling
time and the dominant poles of the system.

We have the settling times T 1
s = 4

5
, T 2

s = 4
4
, and T 3

s = 4
3
. The largest of these is Ts = 4

3
, so this

is the estimated settling time of the system. This settling time is associated with the poles at
−3± 2j, so these are the dominant poles.

Example 10. Assume we have a system with poles at −2 ± 3j,−1,−5 ± 2j. Determine the
settling time and the dominant poles of the system.

We have the settling times T 1
s = 4

2
, T 2

s = 4
1
, and T 3

s = 4
5
. The largest of these is Ts = 4

1
, so this

is the estimated settling time of the system. This settling time is associated with the pole at
−1, so this is the dominant pole.

While the poles of the system determine the characteristic modes of the system, the amplitudes
that multiply these modes (the ai in the partial fraction expansion) are determined by both the
poles and zeros of the system. In addition, when a pole is repeated, the form of the characteristic
mode is tne−σt (multiplied by sine or cosine for complex poles). Neither of these affects, the
zeros of a system and the effects of repeated poles, was considered in estimating the settling
time for a system. However, the approximation we have made is usually fairly reasonable.

Dominant poles are the slowest responding poles in a system. If we want faster response, these
are the poles we must move away from the ω axis.

45

7 Basic Feedback Configuration

The most basic feedback configuration we will deal with is shown below

R(s)
- Gpf

-±°
²¯

- Gc(s) - Gp(s) -
Y (s)

�H(s)

6

+-

Here R(s) is the reference input. This is usually the signal we are trying to follow. Gpf (s) is a
prefilter which is usually used to condition the signal (change units) or to scale the input to fix
the final value of the output. Gp(s) is a model of the plant we are trying to control. Gc(s) is
a controller (or product of controllers) we have designed to improve performance. Y (s) is the
system output, and H(s) is a signal conditioner often used to change the units of the output into
more convenient units. There are usually two other variables identifies in the block diagram,
which are shown below:

R(s)
- Gpf

-±°
²¯

-
E(s)

Gc(s) -
U(s)

Gp(s) -
Y (s)

�H(s)

6

+-

Here U(s) is the input the the plant, so Y (s) = Gp(s)U(s). Finally, E(s) is the error signal, or
actuating error.

To determine the overall transfer function, we find

Y (s) = Gp(s)U(s)

= Gp(s)Gc(s)E(s)

and

E(s) = Gpf (s)R(s)−H(s)Y (s)

Combining these we get

Y (s) = Gp(s)Gc(s) [Gpf (s)R(s)−H(s)Y (s)]

= Gpf (s)Gc(s)Gp(s)R(s)−Gc(s)Gp(s)H(s)Y (s)

Y (s) + Gc(s)Gp(s)H(s)Y (s) = Gpf (s)Gc(s)Gp(s)R(s)

Y (s) [1 + Gc(s)Gp(s)H(s)] = Gpf (s)Gc(s)Gp(s)

or the closed loop transfer function is

G0(s) =
Y (s)

R(s)
=

Gpf (s)Gc(s)Gp(s)

1 + Gc(s)Gp(s)H(s)

46

8 Model Matching

The first type of control scheme we will discuss is that of model matching. Here we assume we
have a plant Gp(s) with a controller Gc(s) in a untiy feedback scheme, as shown below.

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

For this closed loop feedback system, the close loop transfer function G0(s) is given by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

The object of this course it to determine how to choose the controller Gc(s) so the overall system
meets some design criteria. The idea behind model matching is to assume we know what we
want the closed loop transfer function G0(s) to be. Then, since G0(s) and Gp(s) are known, we
can determine the controller Gc(s) as

[1 + Gc(s)Gp(s)] G0(s) = Gc(s)Gp(s)

G0(s) + Gc(s)Gp(s)G0(s) = Gc(s)Gp(s)

G0(s) = Gc(s)Gp(s)−Gc(s)Gp(s)G0(s)

G0(s) = Gc(s)Gp(s) [1−G0(s)]

or

Gc(s) =
G0(s)

Gp(s) [1−G0(s)]

While this looks simple, there are certain restrictions on when this will work. The closed loop
transfer function G0(s) is said to be implementable if1

1. The controller Gc(s) is a proper rational transfer function

2. The controller Gc(s) is stable

Consider a plant with proper transfer function Gp(s) = N(s)
D(s)

where we want the closed loop

transfer function to be G0(s) = N0(s)
D0(s)

. We can find a Gc(s) so that G0(s) is implementable only
under the following conditions

1There are other restrictions, but they are not important in this course.

47

1. The degree of D0(s) - the degree of N0(s) ≥ the degree D(s) - the degree of N(s)

2. All right half plane zeros of N(s) are retained in N0(s) (the RHP zeros of the plant must
also be in the closed loop transfer function)

3. G0(s) is stable, i.e., all poles of G0(s) are in the left half plane (none on the axes)

Example 1. Consider the system with plant

Gp(s) =
(s + 2)(s− 1)

s(s2 − 2s + 2)

Are the following closed loop transfer functions implementable?

1. G0(s) = 1. (No, it violates (1) and (2))

2. G0(s) = (s+2)
(s+3)(s+1)

. (No, violates (2))

3. G0(s) = (s−1)
(s+3)(s+1)

. (Yes)

4. G0(s) = (s−1)
s(s+2)

. (No, violates (3))

5. G0(s) = (s−1)
(s+3)(s+1)2

. (Yes)

6. G0(s) = (s−1)(2s−3)
(s+2)3

. (Yes)

Now that we know when we can use model matching, we need to find some good models. That is,
how do we find a desirable G0(s)? We will look at two possible choices, ITAE optimal systems,
and quadratic optimal systems.

8.1 ITAE Optimal Systems

ITAE optimal systems minimize the Integral of Time multiplied by the Absolute Error. These
have been determined numerically. The second, third, and fourth order zero position error ITAE
systems have the following closed loop transfer functions

G0(s) =
ω2

0

s2 + 1.4ω0s + ω2
0

G0(s) =
ω3

0

s3 + 1.75ω0s2 + 2.15ω2
0s + ω3

0

G0(s) =
ω4

0

s4 + 2.1ω0s3 + 3.4ω2
0s

2 + 2.7ω3
0s + ω4

0

The second, third, and fourth order velocity position error ITAE systems have the following
closed loop transfer functions

G0(s) =
3.2ω0s + ω2

0

s2 + 3.2ω0s + ω2
0

48

G0(s) =
3.25ω2

0s + ω3
0

s3 + 1.75ω0s2 + 3.25ω2
0s + ω3

0

G0(s) =
5.14ω3

0s + ω4
0

s4 + 2.41ω0s3 + 4.93ω2
0s

2 + 5.14ω3
0s + ω4

0

You, the designer, need to choose the value of ω0. The larger the ω0, the faster the system
responds (good) and the larger the control effort (bad).

8.2 Quadratic Optimal Systems

For a quadratic optimal system, we want to find the closed loop transfer function G0(s) to
minimize the quadratic performance index

J =
∫ ∞

0

{
q [y(t)− r(t)]2 + u2(t)

}
dt

where y(t) is the output of the system, r(t) is the input to the system, q is a positive constant
that weighs the difference between the input to the system and the output to the system, and
u(t) is the actuating signal (the input to the plant we are trying to control.) In general, for
this type of controller, we want the output of our system to match (or track) the input to the
system. To determine G0(s) to solve this problem, we need to first discuss spectral factorization.

Consider first the plant with proper transfer function Gp(s) = N(s)
D(s)

where D(s) and N(s) have
no common factors. Next, consider the polynomial

Q(s) = D(s)D(−s) + qN(s)N(−s)

Clearly Q(−s) = Q(s), hence if s1 is a root of Q(s), then so is −s1. Since all of the coefficients
of Q(s) are real by assumption (we assume Gp(s) is real), if s1 is a root of Q(s) than so is its
complex conjugate s∗1. Hence all of the roots of Q(s) are symmetric with respect to

• the real axis

• the imaginary axis

• the origin of the s-plane

Now consider

Q(jω) = D(jω)D(−jω) + qN(jω)N(−jω)

= |D(jω)|2 + q|N(jω)|2

Since D(s) and N(s) have no common factors, there exists no ω0 so that both D(jω0) = 0 and
N(jω0) = 0. Since q 6= 0, there exists no ω0 so that Q(ω0) = 0. Hence Q(s) has no roots on
the jω axis.

Since the roots of Q(s) are either in the left half plane or the right half plane (none on the
jω axis), and since by symmetry there will be an equal number in each plane, we will divide
up the roots of Q(s) into those in the open LHP and those in the open RHP. Let’s denote the

49

polynomial whose roots are those of the open LHP roots of Q(s) as D0(s). Then, by symmetry,
D0(−s) is a polynomial whose roots are the open RHP roots of Q(s). Thus

Q(s) = D(s)D(−s) + qN(s)N(−s) = D0(s)D0(−s)

This is called the spectral factorization of Q(s). Now we can give the result.

Consider a plant with proper transfer function Gp(s) = N(s)/D(s) where

• N(s) and D(s) have no common factors

• The leading coefficient of D(s) (the coefficient of the highest power of s in D(s)) is 1.
That is, D(s) is monic.

An implementable transfer function G0(s) that minimizes the performance index

J =
∫ ∞

0

{
q [y(t)− r(t)]2 + u2(t)

}
dt

where r(t) = 1 (a unit step) and q > 0 is given by

G0(s) =
qN(0)N(s)

D0(0)D0(s)

where

Q(s) = D(s)D(−s) + qN(s)N(−s) = D0(s)D0(−s)

Note that we are not guaranteed a zero position error with this method. For a zero position
error we should have G0(0) = 1. In addition, if N(s) = s this will not work (since N(0) = 0.)

Example 2. Suppose we have the plant with transfer function

Gp(s) =
1

s2 + 1

and we want to find G0(s) to minimize

J =
∫ ∞

0

{
10 [y(t)− r(t)]2 + u2(t)

}
dt

Clearly q = 10, Gp(s) is a proper transfer function, and N(s) and D(s) have no common factors
and D(s) is a monic polynomial. Now N(s) = 1 and D(s) = s2 + 1, and D(s) is monic. So we
have

D(s) = s2 + 1 N(s) = 1

D(−s) = s2 + 1 N(−s) = 1

and

Q(s) = D(s)D(−s) + qN(s)N(−s)

=
[
s2 + 1

] [
s2 + 1

]
+ 10 [1] [1]

=
[
s4 + 2s2 + 1

]
+ 10 [1]

= s4 + 2s2 + 11

50

Note that Q(s) is an even function of s. If it is not, you screwed up! Now we need to find the
roots of Q(s). These roots are −1.0762± 1.4691j and 1.0762± 1.4969j. To construct D0(s) we
use only those roots in the LHP, i.e. the roots at −1.0762± 1.4691.

D0(s) = (s + 1.0762− 1.4691j)(s + 1.0762 + 1.4691j)

D0(s) = s2 + 2.1525s + 3.3166

Now we can compute the optimal G0(s) as

G0(s) =
qN(0)N(s)

D0(0)D0(s)
=

(10)(1)(1))

(3.3166)(s2 + 2.1525s + 3.3166)

=
3.01514

s2 + 2.1525s + 3.3166

Note that G0(0) = 0.909, which yields a position error of ep = 0.091. Finally, to determine the
controller, we use the formula

Gc(s) =
G0(s)

Gp(s) (1−G0(s))

which produces the controller

Gc(s) =
1.401s2 + 1.401

0.4646s2 + s + 0.1401

=
1.401[s2 + 1]

0.4646s2 + s + 0.1401

Note that the controller has been scaled, and there will be a pole/zero cancellation between the
plant and the controller. Since these are marginally stable poles this may not be a good idea.

Example 3. Suppose we have the plant with transfer function

Gp(s) =
0.3(s + 2)

0.01s2 + 0.2s + 1

and we want to find G0(s) to minimize

J =
∫ ∞

0

{
15 [y(t)− r(t)]2 + u2(t)

}
dt

Clearly q = 15, Gp(s) is a proper transfer function, and N(s) and D(s) have no common factors.
However, before we use the algorithm we must be sure D(s) is a monic polynomial. To do this,
we multiply both the top and bottom by 100

Gp(s) =
100

100

0.3(s + 2)

0.01s2 + 0.2s + 1
=

30(s + 2)

s2 + 20s + 100

Now N(s) = 30(s + 2) and D(s) = s2 + 20s + 100, and D(s) is monic. So we have

D(s) = s2 + 20s + 100 N(s) = 30(s + 2)

D(−s) = s2 − 20s + 100 N(−s) = 30(−s + 2)

51

and

Q(s) = D(s)D(−s) + qN(s)N(−s)

=
[
s2 + 20s + 100

] [
s2 − 20s + 100

]
+ 15 [30(s + 2)] [30(−s + 2)]

=
[
s4 − 200s2 + 10000

]
+ 15

[
−900s2 + 3600

]

= s4 − 13, 700s2 + 64, 000

Note that Q(s) is an even function of s. If it is not, you screwed up! Now we need to find the
roots of Q(s). These roots are ±117.027 and ±− 2.161. To construct D0(s) we use only those
roots in the LHP, i.e. the roots at -117.027 and -2.161

D0(s) = (s + 117.027)(s + 2.161)

D0(s) = s2 + 119.2s + 252.9

Now we can compute the optimal G0(s) as

G0(s) =
qN(0)N(s)

D0(0)D0(s)
=

(15)(60)30(s + 2)

(252.9)(s2 + 119.2s + 252.9)

=
106.7(s + 2)

s2 + 119.2s + 252.9

Note that G0(0) = 0.8438, which yields a position error of ep = 0.156. Finally, to determine the
controller, we use the formula

Gc(s) =
G0(s)

Gp(s) (1−G0(s))

which produces the controller

Gc(s) =
0.09s2 + 1.8s + 9

0.0253s2 + 0.3153s + 1

=
0.09[s2 + 20s + 100]

0.0253s2 + 0.3153s + 1

Note that this controller has been scaled and there is a pole/zero cancellation between the con-
troller and the plant. The poles being cancelled are stable poles, so this is probably acceptable.

8.3 Summary and Caveates

In the first part of this section, the conditions under which it is possible to to obtain an im-
plementable closed loop transfer function G0(s) have been given, it may not be possible to find
such a G0(s) using the ITAE and quadratic optimal criteria. Specifically, these two methods
may not work with a unity feedback system if

• the plant has open RHP zeros

• the plant has two or more zeros at the origin

52

In these cases different approaches must often be taken to find a good closed loop transfer
function, or a different approach must be taken to try and control the system.

The model matching methods we have discussed often utilize pole-zero cancellations between
the controller Gc(s) and the plant Gp(s) to achieve the desired closed loop transfer function. As
long as a stable pole is being cancelled, this is usually OK. However cancelling an unstable pole
is not acceptable. However, the plant may change over time, and we are dealing with models
of the plant in the first place. Hence the pole-zero cancellations may not be very effective for
some systems.

53

9 System Type and Steady State Errors

9.1 Review

Let’s assume we have a control system in a unity feedback configuration, as shown below:

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

where Gp(s) is the plant transfer function and Gc(s) is a controller. The closed-loop transfer
function is given by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

We already know that if we write

G0(s) =
nmsm + nm−1s

m−1 + ... + n2s
2 + b1s + b0

sn + dn−1sn−1 + ... + d2s2 + d1s + d0

that the position error for an input step of amplitude A is given by

ep = A
d0 − n0

d0

If G0(0) = 1 (the constant terms in the numerator and denominator are the same) then ep = 0.
The velocity error for an input of tA is given by

ev = A
d1 − n1

d0

If the coefficients of s1 and s0 are the same, then the velocity error is zero.

9.2 System Type For a Unity Feedback Configuration

Unity feedback configurations are very common, and we would like to be able to analyze this
type of system very quickly without computing the closed loop transfer function.

Let’s assume we group the all of the transfer functions together into one transfer function, which
we will call G(s), so G(s) = Gc(s)Gp(s). Assume we write G(s) as2

G(s) =
K(Tas + 1)(Tbs + 1)...(Tms + 1)

sN(T1s + 1)(T2s + 1)...(Tns + 1)

2We do not actually want to rewrite G(s), this is just used for illustrative purposes.

54

This is said to be a type N system, where N is the number of poles at the origin of G(s).
(These poles at the origin are also called “free integrators”.) If the system output is Y (s) and
the system input is R(s), then the system transfer function is

Y (s)

R(s)
=

G(s)

1 + G(s)

Let’s define the error E(s) to be the difference between the input R(s) and the output Y (s),

E(s) = R(s)− Y (s)

= R(s)− G(s)

1 + G(s)
R(s)

=
R(s) {[1 + G(s)]−G(s)}

1 + G(s)

=
R(s)

1 + G(s)

The steady state error is then

ess = lim
s→0

sE(s) = lim
s→0

sR(s)

1 + G(s)

We will use this expression to determine expressions for the position and velocity errors for unity
feedback systems.

9.3 Position and Velocity Errors

As we have previously defined, the position error is the difference between a step input r(t) and
the corresponding output y(t) as we let t →∞. Hence ep = lims→0 sE(s) for R(s) = A

s
, or

ep = lim
s→0

sE(s)

= lim
s→0

sA
s

1 + G(s)

= lim
s→0

A

1 + G(s)

=
A

1 + G(0)

=
A

1 + Kp

The position error constant Kp is defined to be G(0). For a type 0 system Kp = K and ep = A
1+K

,
while for a type 1 or higher system, Kp = ∞ and ep = 0.

The velocity error is the difference between a ramp input r(t) and the corresponding output y(t)
as we let t →∞. Hence ev = lims→0sE(s) for R(s) = A

s2 , or

ev = lim
s→0

sE(s)

55

= lim
s→0

s A
s2

1 + G(s)

= lim
s→0

A

s + sG(s)

= lim
s→0

A

sG(s)

=
A

Kv

The velocity error constant Kv is defined to be lims→0 sG(s). For a type 0 system Kv = 0 and

ev = ∞. For a type 1 system Kv = K and ev = A
K

. For a type 2 or higher system, Kv = ∞ and
ev = 0.

We can summarize these results in table 1 below.

System Type ep ev

0 A
1+Kp

∞
1 0 A

Kv

2 0 0
3 0 0

Table 1: Summary of system type (number of poles at the origin), position error ep for an input
Au(t), and velocity error ev for an input Atu(t) for a unity feedback system.

9.4 Examples

Example 1. For the unity feedback system shown below, determine the system type, the
position error ep and the velocity error ev.

-
½¼

¾»
- s+1

s+2
- 1

s+3
-

6

+
-

Here

G(s) =
(s + 1)

(s + 2)(s + 3)

there are no poles at zero so this is a type 0 system. The position error constant is then

Kp = lim
s→0

G(s)

=
1

(2)(3)

56

=
1

6

so

ep =
A

1 + Kp

=
A

1 + 0.1667
= 0.857A

Since ep is not zero, ev = ∞. (ev = ∞ since this is a type 0 system).

Example 2. For the unity feedback system shown below, determine the system type, the
position error ep and the velocity error ev.

-
½¼

¾»
- s+1

s
- s+4

s2+2s+3
-

6

+
-

Here

G(s) =
(s + 1)(s + 4)

s(s2 + 2s + 3)

there is one pole at zero so this is a type 1 system. The position error is then ep = 0. Note that
we do note need to do any computation for this once we recognize this as a type 1 system!. The
velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

3

=
4

3

so

ev =
A

Kv

=
A(
4
3

)

= 0.75A

57

Example 3. For the unity feedback system shown below, determine the system type, the
position error ep and the velocity error ev.

-
½¼

¾»
- s+1

s+6
- 4

s2+2s
-

6

+
-

Here

G(s) =
(s + 1)(4)

(s + 6)s(s + 2)

there is one pole at zero so this is a type 1 system. The position error is then ep = 0. The
velocity error constant is then

Kv = lim
s→0

sG(s)

=
(1)(4)

(6)(2)

=
1

3
so

ev =
A

Kv

=
A(
1
3

)

= 3A

Example 4. For the unity feedback system shown below, determine the system type, the
position error ep and the velocity error ev.

-
½¼

¾»
- s+1

s
- 4

s2+2s
-

6

+
-

Here

G(s) =
(s + 1)(4)

s2(s + 2)

there are two poles at zero so this is a type 2 system. Hence both ep and ev are zero.

58

10 Controller Design Using the Root Locus

This section has not been written yet.

59

1. Loci Branches

poles (k = 0) → zeros (k = ∞)

Continuous curves, which comprise the locus, start at each of the n poles of G(s)H(s) for which
k = 0. As k approaches ∞, the branches of the locus approach the m zeros of G(s)H(s). Locus
branches for excess poles extend to infinity.
The root locus is symmetric about the real axis.

2. Real Axis Segments

The root locus includes all points along the real axis to the left of an odd number of poles plus
zeros of G(s)H(s).

3. Asymptotic Angles

As k →∞, the branches of the locus become asymptotic to straight lines with angles

θ =
180o + i360o

n−m
, i = 0,±1,±2, ...

until all (n−m) angles not differing by multiples of 360o are obtained. n is the number of poles
of G(s)H(s) and m is the number of zeros of G(s)H(s).

4. Centroid of the Asymptotes

The starting point on the real axis from the the asymptotic lines radiate is given by

σ =

∑
i pi −∑

j zj

n−m

where pi is the ith pole of G(s)H(s), zj is the jth zero of G(s)H(s), n is the number of poles of
G(s)H(s) and m is the number of zeros of G(s)H(s). This point is terms the centroid of the
asymptotes.

5. Leaving/Entering the Real Axis

When two branches of the root locus leave or enter the real axis, they usually do so at angles of
±90 degrees.

60

11 Pole Placement By Matching Coefficients: Diophan-

tine Equations

An alternative approach to controller design is to use a controller Gc(s) to put the closed loop
poles of a system in desired locations. We will start this section with an example, then explain
the conditions under which this approach will work, and then do some more examples.

Consider the following unity feedback system

-
½¼

¾»
- Gc(s) - Gp(s) -

6

+
-

with plant

Gp(s) =
s + 1

s2 + s + 1

Assume we want to place the closed loop poles at −2 ± j and -8, so we want the denominator
of the closed loop system to be

D0(s) = (s + 2 + j)(s + 2− j)(s + 8)

= s3 + 12s2 + 37s + 40

Let’s assume the controller has the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (so the controller is proper). Now the closed loop transfer function G0(s) is given
by

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=

(
B0+B1s
A0+A1s

) (
s+1

s2+s+1

)

1 +
(

B0+B1s
A0+A1s

) (
s+1

s2+s+1

)

=
(B0 + B1s)(s + 1)

(A0 + A1s)(s2 + s + 1) + (B0 + B1s)(s + 1)

Since we know where we want the closed loop poles, we equate denominators:

D0(s) = s3 + 12s2 + 37s + 40 = (A0 + A1s)(s
2 + s + 1) + (B0 + B1s)(s + 1)

61

and then equate powers of s:

s3 : 1 = A1

s2 : 12 = A1 + A0 + B1

s1 : 37 = A0 + A1 + B0 + B1

s0 : 40 = A0 + B0

We then have the system of equations

0 0 1 0
1 0 1 1
1 1 1 1
1 1 0 0

A0

B0

A1

B1

 =

1
12
37
40

The solution to this system of equations is A0 = 15, B0 = 25, A1 = 1, and B1 = −4. The
controller is then

Gc(s) =
25− 4s

15 + s

and the closed loop transfer function is

G0(s) =
Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=

(
25−4s
15+s

) (
s+1

s2+s+1

)

1 +
(

25−4s
15+s

) (
s+1

s2+s+1

)

=
(25− 4s)(s + 1)

(15 + s)(s2 + s + 1) + (25− 4s)(s + 1)

=
(25− 4s)(s + 1)

s3 + 12s2 + 39s + 40

We have achieved the desired closed loop poles. However, we have introduced a new zero into
the system at 25

4
. As you will see, this is the major drawback to this kind of controller. While

we can force the closed loop poles to be anything we want, we will be introducing zeros into the
system. If these zeros are acceptable, then we are done. If they are not acceptable, then we need
to try and do something (such as changing where we want the closed loop poles to be) or try a
different type of controller. For this example, the position error is ep = 1− 5

8
= 3

8
. One method

of obtaining zero position error is with a prefilter (with gain 8
5
). A better way is to design the

controller so that the resulting system is a type 1 system. We will show how to do the latter in
a subsequent section.

11.1 Theoretical Background

The results we need to know are stated in the following Theorem. There are two parts to the
Theorem. The first part states the results for a strictly proper plant, while the second part
states the results for a plant where the numerator and denominator polynomials have the same
degree. The important information from the Theorem is knowing the minimum order of the

62

required controller m and the order of the closed loop transfer function n + m.

Theorem Strictly Proper Plant Assume we have a strictly proper nth order plant transfer func-
tion, Gp(s) = N(s)/D(s). Since Gp(s) is strictly proper we have the degree of N(s) < the degree
of D(s). Since Gp(s) is nth order the degree of D(s) = n. Assume also that N(s) and D(s) have
no common factors. Then for any polynomial D0(s) of degree n + m a strictly proper controller
Gc(s) = B(s)/A(s) of degree m exists so that the characteristic equation of the resulting closed
loop system is equal to D0(s). If m = n − 1, the controller is unique. If m ≥ n, the controller
is not unique and some of the coefficients can be used to achieve other design objectives.

Theorem Special case: degree N(s) = degree D(s). Assume we have a proper nth order plant
transfer function, Gp(s) = N(s)/D(s), where the degree of D(s) = degree N(s) = n Assume
also that N(s) and D(s) have no common factors. Then for any polynomial D0(s) of degree
n+m a strictly proper controller Gc(s) = B(s)/A(s) of degree m exists so that the characteristic
equation of the resulting closed loop system is equal to D0(s). If m = n, the controller is unique.
If m ≥ n + 1, the controller is not unique and some of the coefficients can be used to achieve
other design objectives.

How do we do this? For plant Gp(s) = N(s)/D(s), controller Gc(s) = B(s)/A(s), and desired
characteristic equation D0(s) we will have to solve the equation

A(s)D(s) + B(s)N(s) = D0(s)

This is called the Diophantine equation. We solve this equation by equating powers of s, setting
up a system of equations, and then solving. The closed loop transfer function will be

G0(s) =
B(s)N(s)

D0(s)

where B(s) contains the zeros we have added to the system.

Example 1. Assume we are trying to control the plant

Gp(s) =
10

s2 + 1

Since n = 2 we need the order of the controller m ≥ n−1 or m ≥ 1. We’ll choose m = 1. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 3 poles. Let’s assume we want the
closed loop poles to be at −10± 5j and -20. Then

D0(s) = (s + 10 + 5j)(s + 10− 5j)(s + 20)

= s3 + 40s2 + 525s + 2500

63

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)

(A0 + A1s)
(
s2 + 1

)
+ (B0 + B1s) (10) = s3 + 40s2 + 525s + 2500

Now we equate powers of s

s3 : 1 = A1

s2 : 40 = A0

s1 : 525 = A1 + 10B1

s0 : 2500 = A0 + 10B0

In this case we can solve directly to get A0 = 40, B0 = 246, A1 = 1 ad B1 = 52.4. Hence our
controller is

Gc(s) =
246 + 52.4s

40 + s

and the closed loop transfer function is

G0(s) =
(246 + 52.4s)10

s3 + 40s2 + 525s + 2500

We have introduced a zero at -4.69. The position error is ep = 1−G0(0) = 0.016.

Example 2. Assume we are trying to control the plant

Gp(s) =
(s + 1)

s3 + 4s2 + 3s + 6

Since n = 3 we need the order of the controller m ≥ n−1 or m ≥ 2. We’ll choose m = 2. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s + B2s

2

A0 + A1s + A2s2

where A2 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 5 poles. Let’s assume we want all the
closed loop poles to be at -5. Then

D0(s) = (s + 5)5

= s5 + 25s4 + 250s3 + 1250s2 + 3125s + 3125

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)(
A0 + A1s + A2s

2
) (

s3 + 4s2 + 3s + 6
)

+
(
B0 + B1s + B2s

2
)

(s + 1) = D0(s)

64

Now we equate powers of s

s5 : 1 = A2

s4 : 25 = A1 + 4A2

s3 : 250 = A0 + 4A1 + 3A2 + B2

s2 : 1250 = 4A0 + 3A1 + 6A2 + B1 + B2

s1 : 3125 = 3A0 + 6A1 + B0 + B1

s0 : 3125 = 6A0 + B0

Hence we have to solve the system of equations

0 0 1 0 0 0
0 1 4 0 0 0
1 4 3 0 0 1
4 3 6 0 1 1
3 6 0 1 1 0
6 0 0 1 0 0

A0

A1

A2

B0

B1

B2

=

1
25
250
1250
3125
3125

Solving this system we get A0 = 190.6, B0 = 1981.0, A1 = 21.0, B1 = 446.0, A2 = 1, and
B2 = −27.7. Hence our controller is

Gc(s) =
1981.0 + 446.0s− 27.7s2

190.6 + 21.0s + s2

and the closed loop transfer function is

G0(s) =
(1981.0 + 446.0s− 27.7s2)(s + 1)

s5 + 25s4 + 250s3 + 1250s2 + 3125s + 3125

We have introduced two zeros at 19.7 and -3.62. The position error is ep = 1−G0(0) = 0.366,
which is quite poor. In this case we would probably use a prefilter with amplitude 1

G0(0)
= 1.581.

11.2 Pole Placement with Robust Tracking

We would like to avoid the prefilter approach to achieving zero position error, since the system
may change over time. If we can make the plant-controller combination a type 1 system, then the
closed loop system will have zero position error even if the plant changes over time (or our model
is not exact). To do this, we will insert an integrator in the controller. Do do this, we increase
the degree of the controller we need by 1, and use the extra parameter to create a type 1 system.
To create the type one system, we will increase the order of the controller by one and set A0 = 0.

Example 3. Assume we are trying to control the plant

Gp(s) =
3

s2 + 3s + 2

65

Since n = 2 we need the order of the controller m ≥ n−1 or m ≥ 1. We’ll choose m = 1. Hence
we will be looking at a controller of the form

Gc(s) =
B0 + B1s

A0 + A1s

where A1 6= 0 (we need a proper controller transfer function). Next, we need to know the desired
characteristic equation, D0(s). We need to have n + m = 3 poles. Let’s assume we want the
closed loop poles to be at −5± j and -20. Then

D0(s) = (s + 5 + j)(s + 5− j)(s + 20)

= s3 + 30s2 + 226s + 520

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)

(A0 + A1s)
(
s2 + 3s + 2

)
+ (B0 + B1s) (3) = s3 + 30s2 + 226s + 520

Now we equate powers of s

s3 : 1 = A1

s2 : 30 = A0 + 3A1

s1 : 226 = 3A0 + 2A1 + 3B1

s0 : 520 = 2A0 + 3B0

In this case we can solve directly to get A0 = 27.00, B0 = 155.33, A1 = 1.00 ad B1 = 47.67.
Hence our controller is

Gc(s) =
155.33 + 47.67s

27.00 + s

and the closed loop transfer function is

G0(s) =
3(155.33 + 47.67s)

s3 + 30s2 + 226s + 520

We have introduced a zero at -3.26. The position error is ep = 1−G0(0) = 0.104.

Now let’s assume we want zero position error, but don’t want to use a prefilter. To do this, we
increase the order of the controller by one, (so m = 2) and to be sure we have a type one system
we set A0 = 0. Hence we assume a controller of the form

Gc(s) =
B0 + B1s + B2s

2

A1s + A2s2

where A2 6= 0. We now need a characteristic polynomial with n+m = 4 roots, so there are four
closed loop poles to assign. Let’s assume we want to keep the poles we have, and put the new
pole at -30. Hence the closed loop poles are at −5± j, -20, and -30. Then

D0(s) = (s + 5 + j)(s + 5− j)(s + 20)(s + 30)

= s4 + 60s3 + 1126s2 + 7300s + 15600

66

Now we need to solve the Diophantine equations

A(s)D(s) + B(s)N(s) = D0(s)(
A1s + A2s

2
) (

s2 + 3s + 2
)

+
(
B0 + B1s + B2s

2
)

(3) = s4 + 60s3 + 1126s2 + 7300s + 15600

Now we equate powers of s

s4 : 1 = A2

s3 : 60 = A1 + 3A2

s2 : 1126 = 3A1 + 2A2 + 3B2

s1 : 7300 = 2A1 + 3B1

s0 : 15600 = 3B0

We can easily solve these equations to give B0 = 5200, A1 = 57.0, B1 = 2395.3, A2 = 1, and
B2 = 317.6.

Gc(s) =
5200 + 2395.3s + 317.7s2

57s + s2

and the closed loop transfer function is

G0(s) =
3(5200 + 2395.3s + 317.7s2)

s4 + 60s3 + 1126s2 + 7300s + 15600

We have introduced zeros at -3.7 ±1.49j. Since we have a type one system, the position error
is zero.

11.3 Summary

We have shown that by utilizing the Diophantine equations, we can place the closed loop poles
wherever we want. In addition, by choosing the order of the controller larger than is necessary
to place the poles, we can also force the system to be a type 1 system (or even a type two
system). However, in utilizing this method, we introduce zeros into the system. The only way
to determine if the added zeros are detrimental to acceptable transient behavior is to simulate
the system. By appropriate choice of desired closed loop poles we can sometimes change the
locations of these zeros so the system response is acceptable.

67

12 System Sensitivity

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. This type
of sensitivity is important to study since we need to be able to determine how to design a control
system to reduce the sensitivity of the system to changes in the plant, since we often have to
estimate the plant and this estimation will contain some errors. The other type of sensitivity
usually refers to how sensitive the system is to outside disturbances. Again, this is important
to understand so we can design a control system to reduce the effects of external disturbances.
Finally, it is important to understand that sensitivity is a function of frequency, and you need to
understand the range of frequencies you expect to be operation your system under. For example,
a system may be very sensitive to a parameter at frequencies near 100 Hz, but if your system is
typically operating in the 1-10 Hz range this sensitivity is not very important.

12.1 Sensitivity to Parameter Variations

The system sensitivity to changes in a parameter α is defined as the ratio of the percentage
change in the system transfer function G0(s) to the percentage change in the parameter α to its
nominal value α0. Note that α may itself be a transfer function or a block in the block diagram
representation of a system.

To mathematically define the sensitivity, let’s denote the system transfer function as

G0(s) =
N0(s)

D0(s)

Then the sensitivity of G0 with respect to changes in α is

SG0
α (s) =

∆G0(s)/G0(s)

∆α/α

∣∣∣∣∣
α0

=
α

G0(s)

∆G0(s)

∆α

∣∣∣∣∣
α0

=
α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

A simpler formula for this can be derived as follows:

∂G0(s)

∂α
=

∂

∂α

N0(s)

D0(s)

=
D0(s)

∂N0(s)
∂α

−N0(s)
∂D0(s)

∂α

D0(s)2

=
1

D0(s)

∂N0(s)

∂α
− N0(s)

D0(s)2

∂D0(s)

∂α

=
N0(s)

D0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)

68

Hence

SG0
α (s) =

α

G0(s)

∂G0(s)

∂α

∣∣∣∣∣
α0

=
α

G0(s)
G0(s)

(
1

N0(s)

∂N0(s)

∂α
− 1

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

or

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

It is important to note that:

• The sensitivity is really a function of frequency s = jω, and we normally look at the
magnitude as a function of frequency,

∣∣∣SG0
α0

(jω)
∣∣∣

• We are looking at variations from the nominal values of α0

Example 1. Consider the closed loop system shown below:

-
½¼

¾»
-

K
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

where the nominal values of the parameters are ωn = 20, ζ = 0.1, and K = 0.1. To compute
the sensitivity of the closed loop system to variations in ωn (from the nominal value) we first
determine the close loop transfer function

G0(s) =
K

1
ω2

n
s2 + 2ζ

ωn
s + 1 + K

=
Kω2

n

s2 + 2ζωns + ω2
n(K + 1)

Hence

N0(s) = Kω2
n

D0(s) = s2 + 2ζωns + ω2
n(K + 1)

69

We then compute

∂N0(s)

∂ωn

= 2ωnK

∂D0(S)

∂ωn

= 2ζs + 2ωn(K + 1)

SG0
ωn

(s) =

(
ωn

N0(s)

)
(2ωnK) +

(
ωn

D0(s)

)
[2ζs + 2ωn(K + 1)]

=
2ω2

nK

ω2
nK

− 2ζωns + 2ω2
n(K + 1)

s2 + 2ζωns + ω2
n(K + 1)

= 2− 2ζωns + 2ω2
n(K + 1)

s2 + 2ζωns + ω2
n(K + 1)

=
[2s2 + 4ζωns + 2ω2

n(K + 1)]− [2ζωns + 2ω2
n(K + 1)]

s2 + 2ζωns + ω2
n(K + 1)

=
2s2 + 2ζωns

s2 + 2ζωns + ω2
n(K + 1)

In terms of frequency this is

SG0
ωn

(jω) =
−2ω2 + 2jζωnω

−ω2 + j2ζωnω + ω2
n(K + 1)

In terms of the magnitude this is

∣∣∣SG0
ωn

(jω)
∣∣∣ =

√
(2ω2)2 + (2ζωnω)2

√
(ω2

n(K + 1)− ω2)2 + (2ζωnω)2

Figure 11 shows a graph of the sensitivity function |SG0
ωn

(jω)| as a function of frequency, for the
nominal values K = 0.1, ωn = 20, and ζ = 0.1. As the figure shows, the system is not very
sensitive to changes in ωn until ω is around 10 rad/sec.

Example 2. Consider the following two systems, the first is an open loop system with a prefilter
(Gpf) and controller (Gc(s)) before the plant (Gp(s)), and the second is a closed loop system
with a prefilter outside of the closed loop and a controller inside the loop before the plant. Let’s

70

10
0

10
1

10
2

0

2

4

6

8

10

12

Frequency (rad/sec)

S
en

si
tiv

ity
, S

G ω
n

Figure 11: The sensitivity function of Example 1, SG0
ωn

(jω)|, as a function of frequency for the
nominal values K = 0.1, ωn = 20, and ζ = 0.1.

examine the sensitivity of each system to variations in the prefilter and controller.

R(s)
- Gpf

- Gc(s) - Gp(s) -
Y (s)

R(s)
- Gpf

-±°
²¯

- Gc(s) - Gp(s) -
Y (s)

6

+-

First we need to determine expressions for the transfer function between the input R(s) and
output Y (s) for the two systems. For the open loop system we have

Gopen
0 (s) = Gpf (s)Gc(s)Gp(s)

while for the closed loop system we have

Gclosed
0 (s) =

Gpf (s)Gc(s)Gp(s)

1 + Gc(s)Gp(s)

71

Let’s first compute the sensitivity to variations in the prefilter, Gpf (s). For the open loop system

S
Gopen

0
Gpf

=
Gpf (s)

N0(s)

∂N0(s)

∂Gpf (s)
− Gpf (s)

D0(s)

∂D0(s)

∂Gpf (s)

=
Gpf (s)

Gpf (s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gpf

=
Gpf (s)

N0(s)

∂N0(s)

∂Gpf (s)
− Gpf (s)

D0(s)

∂D0(s)

∂Gpf (s)

=
Gpf (s)

Gpf (s)Gc(s)Gp(s)
Gc(s)Gp(s)− 0

= 1

Hence both the open and closed loop systems are equally sensitive to variations in the prefilter
Gpf (s). This is because the prefilter is outside of the close loop. Feedback cannot help compensate
for variations outside of the closed loop!
Now let’s compute the sensitivity to variations in the plant, Gp(s). For the open loop system

S
Gopen

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf (s)Gc(s)Gp(s)
Gpf (s)Gc(s)− 0

= 1

For the close loop system

S
Gclosed

0
Gp

=
Gp(s)

N0(s)

∂N0(s)

∂Gp(s)
− Gp(s)

D0(s)

∂D0(s)

∂Gp(s)

=
Gp(s)

Gpf (s)Gc(s)Gp(s)
Gpf (s)Gc(s)− Gp(s)

1 + Gc(s)Gp(s)
Gc(s)

= 1− Gc(s)Gp(s)

1 + Gc(s)Gp(s)

=
[1 + Gc(s)Gp(s)]− [Gc(s)Gp(s)]

1 + Gc(s)Gp(s)

=
1

1 + Gc(s)Gp(s)

In order to reduce the sensitivity of the system to variations in the plant, we want |1 +
Gc(jω)Gp(jω)| to be large. In this case, the closed loop system can be made much less sensitive
to variations in the plant than the open loop systems. This is because the plant is inside of
the close loop. Feedback can help compensate for parameter/plant variations inside of the closed
loop!

72

12.2 Sensitivity to External Disturbances

In addition to the sensitivity of a system to variation in a parameter, we need to also look at
the sensitivity of a system to external disturbances. The two most common models of external
disturbances are (1) a disturbance that changes the controlled variable, and (2) additive noise
in a sensor. Consider the system shown below, with additive disturbances D(s), which models
an output disturbance, and N(s), which models a noise disturbance. When analyzing each of
these disturbances we assume there is only one input to the system at a time.

R(s)
- Gpf

-±°
²¯

-
E(s)

Gc(s) - Gp(s) -±°
²¯
++ -

Y (s)?

D(s)

?

±°
²¯
++� N(s)

6

+-

For the output disturbance, we compute the transfer function from D(s) to Y (s) (assuming
N(s) and R(s) are zero) as

E(s) = 0− Y (s)

Y (s) = E(s)Gc(s)Gp(s) + D(s)

= −Gc(s)Gp(s)Y (s) + D(s)

or the closed loop transfer function from D(s) to Y (s) is

GD
0 (s) =

1

1 + Gc(s)Gp(s)

Hence to reduce the sensitivity of the system to output disturbances we need |1+Gc(jω)Gp(jω)|
to be large. This is the same condition we had to reduce the system sensitivity to variations in
Gp(s).

For the noise disturbance, we compute the transfer function from N(s) to Y (s) (assuming D(s)
and R(s) are zero) as

E(s) = 0− [N(s) + Y (s)]

Y (s) = E(s)Gc(s)Gp(s)

= −Gc(s)Gp(s)Y (s)−Gc(s)Gp(s)N(s)

or the closed loop transfer function from N(s) to Y (s) is

GN
0 (s) =

−Gc(s)Gp(s)

1 + Gc(s)Gp(s)

Hence to reduce the sensitivity of the system to noise disturbances we need |Gc(jω)Gp(jω)| to be
small. This is essentially the opposite of the condition we need to reduce the system sensitivity
to variations in Gp(s) or to output disturbances.

73

12.3 Summary

There are generally two kinds of sensitivity used in control systems. The first type of sensitivity
refers to the sensitivity of a system to variations in a parameter or transfer function. We compute
this sensitivity as

SG0
α (s) =

(
α

N0(s)

∂N0(s)

∂α
− α

D0(s)

∂D0(s)

∂α

)∣∣∣∣∣
α0

We usually compute the sensitivity as a function of frequency, ω,
∣∣∣SG0

α0
(jω)

∣∣∣. We are generally
only concerned with the sensitivity within a range of frequencies that our system will be oper-
ating in. From the examples we see that, from a system sensitivity view, a closed loop system
has no advantages over an open loop system for parameters or transfer functions outside the
feedback loop. For a closed loop system with plant Gp(s), to minimize the sensitivity of the
closed loop system to variations in the plant we want |1 + Gc(jω)Gp(jω)| to be large.

The other type of sensitivity usually refers to how sensitive the system is to output distur-
bances or noise disturbances. To reduce the effects of output disturbances, we again want |1 +
Gc(jω)Gp(jω)| to be large. To reduce the effects of noise disturbances we want |Gc(jω)Gp(jω)|
to be small. These are contradictory conditions. The relative importance of the different dis-
turbances depends on the particular system being analyzed.

74

13 State Variables and State Variable Feedback

Consider the model of the rectilinear spring-mass-damper system we have been using in lab.

c

m

k k1 2

1

1

F(t)

x (t)1

The equations of motion can be written

m1ẍ1(t) + c1ẋ1(t) + (k1 + k2)x1(t) = F (t)

or

1

ω2
n

ẍ1(t) +
2ζ

ωn

ẋ1(t) + x1(t) =
1

k1 + k2

F (t) ≡ Kstaticu(t)

where u(t) is the motor input in volts, and Kstatic is the static gain for the system. Note that
this gain also includes the open loop motor gain. We can also write this as

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = ω2

nKstaticu(t)

We can take then take Laplace transforms to get the transfer function

Gp(s) =
X1(s)

U(s)
=

Kstatic

1
ω2

n
s2 + 2ζ

ωn
s + 1

We can also write the model in state variable form. For linear, time-invariant models, a state
variable model has the general form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, and A,B, C,
and D are constant matrices.

For our system, let’s let q1(t) = x(t) and q2(t) = ẋ(t). Then we can write

q̇1(t) = q2(t)

q̇2(t) = −2ζωnẋ(t)− ω2
nx(t) + ω2

nKstaticu(t)

= −2ζωnq2(t)− ω2
nq1(t) + ω2

nKstaticu(t)

= −ω2
nq1(t)− 2ζωnq2(t) + ω2

nKstaticu(t)

75

u(t)
- B

- D

?
-±°

²¯
-

ẋ(t)
1
s

-
x(t)

C -±°
²¯
++ -

y(t)

�A

6

++

Figure 12: General state variable form for an open loop plant

-
U(s)

Gp(s) -
Y (s)

Figure 13: General transfer function form for an open loop plant

If the output is considered to be the position of the cart, the correct state variable form is

d

dt

[
q1(t)
q2(t)

]
=

[
0 1
−ω2

n −2ζωn

] [
q1(t)
q2(t)

]
+

[
0

ω2
nKstatic

]
u(t)

y(t) = [1 0]

[
q1(t)
q2(t)

]

If the output was considered to be the velocity of the cart, the output equation would be

y(t) = [0 1]

[
q1(t)
q2(t)

]

while if both the position of the cart and the velocity of the cart were the desired outputs, the
output equation would be

y(t) =

[
1 0
0 1

] [
q1(t)
q2(t)

]

We would like to be able to go between a state variable model of a system to a transfer function
model. Each type of model has its benefits. Figure 12 shows the general form for an open loop
state variable model of a plant, while Figure 13 shows the equivalent transfer function form.

76

13.1 State Variable to Transfer Function Model

Assume we have the state variable description written in scalar form:

ẋ1(t) = a11x1(t) + a12x2(t) + b1u(t)

ẋ2(t) = a21x1(t) + a22x2(t) + b2u(t)

y(t) = c1x1(t) + c2x2(t) + du(t)

In matrix/vector form, this is

[
ẋ1(t)
ẋ2(t)

]
=

[
a11 a12

a21 a22

] [
x1(t)
x2(t)

]
+

[
b1

b2

]
u(t)

y(t) =
[

c1 c2

] [
x1(t)
x2(t)

]
+ [d]u(t)

or

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Taking the Laplace transform of the scalar equations (assuming zero initial conditions) we get

[
sX1(s)
sX2(s)

]
=

[
a11 a12

a21 a22

] [
X1(s)
X2(s)

]
+

[
b1

b2

]
U(s)

Y (s) =
[

c1 c2

] [
X1(s)
X2(s)

]
+ [d]U(s)

We can write this new system of equations in matrix form as

sX(s) = AX(s) + BU(s)

Y (s) = CX(s) + DU(s)

We can rewrite the first equation as

(sI − A) X(s) = BU(s)

or

X(s) = (sI − A)−1BU(s)

We can then solve for Y (s) as

Y (s) =
[
C(sI − A)−1B + D

]
U(s)

or

Y (s) = G(s)U(s)

77

Hence, the transfer function (or transfer matrix, if there is more than one input or output), is
given by

G(s) =
[
C(sI − A)−1B + D

]

In going from a state variable model to a transfer function model, you need to be able to compute
the inverse of a matrix. You are expected to be able to compute the inverse of a 2x2 matrix
without a computer (or calculator). If matrix P is given as

P =

[
a b
c d

]

Then

P−1 =
1

ad− bc

[
d −b
−c a

]

and the determinant of P is given by ad− bc.

Example 1. Assume we have the state variable model

ẋ =

[
1 0
2 3

]
x +

[
5
0

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI − A)−1B + D

]

First we compute sI − A as

sI − A =

[
s 0
0 s

]
−

[
1 0
2 3

]
=

[
s− 1 0
−2 s− 3

]

Next we compute

(sI − A)−1 =
1

(s− 1)(s− 3)− (−2)(0)

[
s− 3 0

2 s− 1

]

then

C (sI − A)−1 = [1 2]
1

(s− 1)(s− 3)

[
s− 3 0

2 s− 1

]

=
1

(s− 1)(s− 3)
[(1)(s− 3) + (2)(2) (1)(0) + (2)(s− 1)]

=
1

(s− 1)(s− 3)
[s + 1 2s− 2]

78

and finally

G(s) = C (sI − A)−1 B

=
1

(s− 1)(s− 3)
[s + 1 2s− 2]

[
5
0

]

=
1

(s− 1)(s− 3)
[5(s + 1) + 0(2s− 2)]

=
5(s + 1)

(s− 1)(s− 3)

The poles of the transfer function are at 1 and 3, and there is a zero at -1. The system is clearly
unstable.

Example 2. Assume we have the state variable model

ẋ =

[
1 0
0 0

]
x +

[
1
1

]
u

y = [1 2] x

and we want to find the transfer function model. We need to compute

G(s) =
[
C(sI − A)−1B + D

]

First we compute sI − A as

sI − A =

[
s 0
0 s

]
−

[
1 0
0 0

]
=

[
s− 1 0

0 s

]

Next we compute

(sI − A)−1 =
1

(s− 1)(s)− (0)(0)

[
s 0
0 s− 1

]

then

C (sI − A)−1 = [1 2]
1

s(s− 1)

[
s 0
0 s− 1

]

=
1

s(s− 1)
[(1)(s) (2)(s− 1)]

=
1

s(s− 1)
[s 2s− 2]

and finally

G(s) = C (sI − A)−1 B

=
1

s(s− 1)
[s 2s− 2]

[
1
1

]

=
1

s(s− 1)
[s + (2s− 2)]

=
3s− 2

s(s− 1)

79

-
r(t)

Kpf
-±°

²ū(t)
- B

- D

?
-±°

²¯
-

ẋ(t)
1
s

-
x(t)

C -±°
²¯
++ -

y(t)

�A

6

++

�K

6

+-

Figure 14: State variable model of a plant with state variable feedback.

The poles of the transfer function are at 0 and 1, and there is a zero at −2
3
. The system is

clearly unstable.

13.2 State Variable Feedback

Up to this point, we have shown how we can go from a state variable description of an open
loop system to a transfer function model. In particular, we can model a plant using either a
transfer function description or a state variable description. We can then implement any of the
single-input single-output controllers we have been utilizing in this course. However, each of
these methods assumes we are feeding back only one variable, usually the output. However, a
state variable model allows us a much more powerful method of control, that of feeding back all
of the states, which is called state variable feedback.

Let’s assume the input to the plant, u(t), is the difference between the scaled reference input,
Kpfr(t), and scaled states, Kx(t), or

u(t) = Kpfr(t)−Kx(t)

Here Kpf is a prefilter, much like we used Gpf (s) for the transfer function feedback systems.
Figure 14 displays a state variable model of a plant with state variable feedback.

With the state variable feedback the state equations become

ẋ(t) = Ax(t) + Bu(t)

= Ax(t) + B [Kpfr(t)−Kx(t)]

= [A−BK] x(t) + [BKpf] r(t)

= Ãx(t) + B̃r(t)

80

where

Ã = [A−BK]

B̃ = BKpf

The output equation is then

y(t) = Cx(t) + Du(t)

= Cx(t) + D [Kpfr(t)−Kx(t)]

= [C −DK] x(t) + [DKpf] r(t)

= C̃x(t) + D̃r(t)

where

C̃ = [C −DK]

D̃ = DKpf

Under most circumstances D = 0 so C̃ = C and D̃ = 0.

The new input to our system is r(t). The transfer function between the input R(s) and the
output Y (s) for the state variable model with state variable feedback is given by

G(s) = C̃
(
sI − Ã

)−1
B̃ + D̃

Example 3. Assume we again have the state variable model

ẋ =

[
1 0
2 3

]
x +

[
5
0

]
u

y = [1 2] x

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
2 3

]
−

[
5
0

]
[K1 K2]

=

[
1 0
2 3

]
−

[
5K1 5K2

0 0

]

=

[
1− 5K1 −5K2

2 3

]

and

B̃ = BKpf =

[
5Kpf

0

]

81

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1− 5K1 −5K2

2 3

]

=

[
s− 1 + 5K1 5K2

−2 s− 3

]

and

(
sI − Ã

)−1
=

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + 5K1)(s− 3)− (−2)(5K2)

[
s− 3 −5K2

2 s− 1 + 5K1

] [
5Kpf

0

]

=
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Kpf (s− 3)

10Kpf

]

Finally, premultiplying by C we get

G(s) = [1 2]
1

(s− 1 + 5K1)(s− 3) + 10K2

[
5Kpf (s− 3)

10Kpf

]

=
5Kpf (s− 3) + (2)(10Kpf)

(s− 1 + 5K1)(s− 3) + 10K2

=
Kpf5(s + 1)

s2 + (5K1 − 4)s + (10K2 − 15K1 + 3)

You should note

• the state variable feedback did not change the zeros of the system

• Kpf is just a scaling factor

• For K1 = K2 = 0 (open loop) and Kpf = 1 (no prefilter), we get

G(s) =
5(s + 1)

(s− 1)(s− 3)

as before.

Example 4. Assume we again have the state variable model

ẋ =

[
1 0
0 0

]
x +

[
1
1

]
u

y = [1 2] x

82

but now we have state variable feedback. We want to find the transfer function model for the
system with the state variable feedback. We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
0 0

]
−

[
1
1

]
[K1 K2]

=

[
1 0
0 0

]
−

[
K1 K2

K1 K2

]

=

[
1−K1 −K2

−K1 −K2

]

and

B̃ = BKpf =

[
Kpf

Kpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1−K1 −K2

−K1 −K2

]

=

[
s− 1 + K1 K2

K1 s + K2

]

and

(
sI − Ã

)−1
=

1

(s− 1 + K1)(s + K2)− (K1)(K2)

[
s + K2 −K2

−K1 s− 1 + K1

]

At this point it is probably easiest to postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + K1)(s + K2)−K1K2

[
s + K2 −K2

−K1 s− 1 + K1

] [
Kpf

Kpf

]

=
Kpf

(s− 1 + K1)(s + K2)−K1K2

[
s

s− 1

]

Finally, premultiplying by C we get

G(s) = [1 2]
Kpf

(s− 1 + K1)(s + K2)−K1K2

[
s

s− 1

]

=
Kpf (3s− 2)

(s− 1 + K1)(s + K2)−K1K2

=
Kpf (3s− 2)

s2 + (K1 + K2 − 1)s−K2

You should note

83

• the state variable feedback did not change the zeros of the system

• Kpf is just a scaling factor

• For K1 = K2 = 0 (open loop) and Kpf = 1 (no prefilter), we get

G(s) =
3s− 2

s(s− 1)

as before.

Example 5. Assume we have the state variable model

ẋ =

[
1 0
0 1

]
x +

[
1
2

]
u

y = [3 4] x

We want to find the transfer function model for the system with the state variable feedback.
We need to compute

G(s) =
[
C̃(sI − Ã)−1B̃ + D̃

]

First we compute

Ã = A−BK =

[
1 0
0 1

]
−

[
1
2

]
[K1 K2]

=

[
1 0
0 1

]
−

[
K1 K2

2K1 2K2

]

=

[
1−K1 −K2

−2K1 1− 2K2

]

and

B̃ = BKpf =

[
Kpf

2Kpf

]

Since D = 0 we have C̃ = C and D̃ = 0.

Next we compute

sI − Ã =

[
s 0
0 s

]
−

[
1−K1 −K2

−2K1 1− 2K2

]

=

[
s− 1 + K1 K2

2K1 s− 1 + 2K2

]

and

(
sI − Ã

)−1
=

1

(s− 1 + K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 + K1

]

84

Let’s postmultiply by B̃ first

(
sI − Ã

)−1
B̃ =

1

(s− 1 + K1)(s− 1 + 2K2)− (2K1)(K2)

[
s− 1 + 2K2 −K2

−2K1 s− 1 + K1

] [
Kpf

2Kpf

]

=
Kpf

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

Finally, premultiplying by C we get

G(s) = [3 4]
Kpf

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

[
s− 1
2s− 2

]

=
Kpf [3(s− 1) + 4(2s− 2)]

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

=
11Kpf (s− 1)

(s− 1 + K1)(s− 1 + 2K2)− 2K1K2

=
11Kpf (s− 1)

[(s− 1) + K1][(s− 1) + 2K2]− 2K1K2

=
11Kpf (s− 1)

(s− 1)2 + (K1 + 2K2)(s− 1) + 2K1K2 − 2K1K2

=
11Kpf

s− 1 + K1 + 2K2

Note that this transfer function has only one pole.

13.3 Controllability for State Variable Systems

A single-input single-output state variable system is said to be controllable 3 if we can place as
many poles of the closed loop transfer function as there are states of the state variable model.
For example, if there are two states in the state variable model we assume we want the closed
loop characteristic equation to be s2 + a1s + a0 and see if we can find K1 and K2 to achieve
any possible values for a1 and a0. If, when when the transfer function is simplified as much as
possible, the order of the characteristic equation (the denominator of the transfer function) is
less than the number of states of the system the system is not controllable or uncontrollable.

Example 6. For the state variable system in Example 3, we set the characteristic polynomial
(after all pole/zero cancellations) to an arbitrary second order polynomial (since there are two
states)

s2 + (5K1 − 4)s + (10K2 − 15K1 + 3) = s2 + a1s + a0

from which we get

5K1 − 4 = a1

5K1 = a1 + 4

K1 =
a1 + 4

5
3This is one of many possible (and equivalent) definitions.

85

and

10K2 − 15K1 + 3 = a0

10K2 = a0 + 15K1 − 3

10K2 = a0 + 3(a1 + 4)− 3

10K2 = a0 + 3a1 − 9

K2 =
a0 + 3a1 − 9

10

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 7. For the state variable system in Example 4, we set the characteristic polynomial
(after all pole/zero cancellations) to an arbitrary second order polynomial (since there are two
states)

s2 + (K1 + K2 − 1)s−K2 = s2 + a1s + a0

from which we get

K2 = −a0

and

K1 + K2 − 1 = a1

K1 = a1 −K2 + 1

K1 = a1 + a0 + 1

Hence we can determine a K1 and K2 to achieve any possible values of a0 and a1. This system
is controllable.

Example 8. For the state variable system in Example 5, we set the characteristic polynomial
(after all pole/zero cancellations) to an arbitrary second order polynomial (since there are two
states)

s− 1 + K1 + 2K2 = s2 + a1s + a0

Clearly it is not possible to find constant values of K1 and K2 so these two equations to be
equal. Hence the system is not controllable.

13.4 Summary

State variable models are an alternative method of modelling a system. However, we can derive
transfer function models from state variable models and state variable models from transfer
function models. State variable models have an advantage over transfer function models in that
we can utilize state variable feedback to place all of the poles of the system if the system is
controllable. Unlike the coefficient matching (Diophantine equation) transfer function methods,
state variable feedback does not add zeros to the closed loop system.

86

14 Controller Design Using Bode Plots

This section has not been written yet. Guidelines for phase lead and phase lag compensators
have been included.

87

“Guidelines” for Phase Lead Compensator Design Using Bode Plots

The primary function of the lead compensator is to reshape the frequency response curve by
adding phase to the system. The phase lead compensator also adds gain to the system.

1 Assume the compensator has the form

Gc(s) = Kc

s + 1
T

s + 1
αT

= Kcα
Ts + 1

αTs + 1
= K

Ts + 1

αTs + 1

Determine K to satisfy the static error constant requirements (for ep and ev, etc.)

2 Using this value of K, draw the Bode diagram of KG(s)H(s). Determine the phase margin.

3 Determine the necessary phase-lead angle to be added to the system. Add an additional 5o

to 12o to the phase lead required, because the phase lead compensator shifts the phase crossover
frequency to the right and decreases the phase margin. φm is then the total phase our compen-
sator needs to add to the system.

4 Determine α using

α =
1− sin(φm)

1 + sin(φm)

Determine the magnitude where KG(jω)H(jω) is equal to −20 log10(
1√
α
) = 10 log10(α). This is

the new gain crossover frequency ωm = 1
T
√

α
, or T = 1

ωm
√

α
.

Note: If α < 0.05, you will probably need two compensators. Choose a phase angle φm that
produces an acceptable α. Finish the design, then treat KGc(s)G(s)H(s) as the system and go
back to step 2 .

5 Determine the corner frequencies of the compensator as z = 1
T

and p = 1
αT

.

6 Determine Kc = K
α
.

7 Check the gain and phase margins to be sure they are satisfactory.

88

“Guidelines” for Phase Lag Compensator Design Using Bode Plots

The primary function of the lag compensator is to reshape the frequency response curve by
removing gain of the system. A phase lag is used when the system would have a large enough
phase margin if the gain crossover frequency was in a different place, but the gain is too large
in that place. The phase lag compensator also removes phase from a the system.

1 Assume the compensator has the form

Gc(s) = Kcβ
Ts + 1

βTs + 1
= Kc

s + 1
T

s + 1
βT

Determine K(= Kcβ) to satisfy the static error constant requirements (for ep and ev, etc.)

2 Using this value of K, draw the Bode diagram of KG(s)H(s). Determine the phase margin.

3 Find the frequency point where the phase angle of KG(jω)H(jω) is equal to -180o plus the
required phase margin. The required phase margin is the specified phase margin plus 5o to
12o. (The additional phase compensates for the phase the lag compensator will remove from the
system.) Choose this frequency as the new phase crossover frequency.

4 Choose the corner frequency ω = 1
T

(the zero of the lag compensator) 1 octave (a factor of
2) to 1 decade (a factor of 10) below the new gain crossover frequency.

5 Determine the current magnitude at the new gain crossover frequency. This magnitude is
equal to 20log10(β). This is the amount of gain the phase lag compensator must remove from
the system. Determine the value of β. (β must be greater than 1, or you have either screwed
up or you cannot use a phase lag compensator.) The pole of the compensator is at ω = 1

βT
.

6 Check the resulting phase and gain margins to be sure they are satisfactory.

89

15 Linearization

Up to this point we have assumed that we have a transfer function model of the system we
are trying to control. However, a transfer function model only exists if the system has a linear
model. If a model is not linear, then we need to determine a linear model of the system in order
to use the techniques we have developed in this class. However, this model is likely to be valid
only over a limited range of values. Before we go into how to get a linear model, we need to be
clear on what we mean by a linear system and review Taylor series.

15.1 Linear Systems

In general, if we have input u(t) and output y(t) we can represent the input output relationship
of a system, whether it is linear or not, as

u(t) → y(t)

Assume input u1(t) produces output y1(t) and input u2(t) produced y2(t),

u1(t) → y1(t)

u2(t) → y2(t)

The system is said to be linear if and only if

α1u1(t) + α2u2(t) → α1y1(t) + α2y2(t)

for all α1, α2, u1(t), and u2(t). If a system is not linear, we cannot take its Laplace transform,
and thus cannot use transfer functions. However, we can often produce a linear model of a
system if we assume it does not deviate too much from a fixed (nominal) value. Hence we are
looking for a linear model near a fixed point. Usually we will assume the fixed point is an
equilibrium point. This is very similar to first biasing a transistor circuit, and then using small
signal analysis about this biasing point.

15.2 Taylor Series

Assume we have a function f(z) and we want to approximate the function near z = 0. The
Taylor series approximation near z = 0 is

f(z) ≈ f(0) + f ′(0)z + higher order terms

You should be able to derive all of the entries in Table 15.2. This approximation is only valid
for z near 0. The further away from zero we go, the worse the approximation is likely to be.

90

f(z) Linear Approximation
(1 + z)a 1 + az

eaz 1 + az
cos(az) 1
sin(az) az

ln(1 + z) z
cos(α + z) cos(α)− z sin(α)
sin(α + z) sin(α) + z cos(α)

Table 2: Functions and their linear approximation near z = 0.

15.3 Linearization Procedure

Our goal here is to find a linear model that we can use to determine the transfer function of a sys-
tem. The procedure we will go through is listed below, and will be followed with a few examples.

Step 1 Determine the nominal operating point of the system and the equation that these oper-
ating points solve. We will assume the operating points are the static equilibrium points. At the
static equilibrium points, all derivatives are zero. For the linearization to be valid, the system
must not stray very far from this operating point. Label these points x0, y0, u0, etc. These
points are assumed to be constants.

Step 2 Look at variations from these operation points. For example, we assume

x(t) = x0 + ∆x(t)

y(t) = y0 + ∆y(t)

u(t) = u0 + ∆u(t)

Note that only ∆x(t) , ∆y(t), etc. vary with time. x0, y0, etc. are constants. Now we have two
cases to consider:

Step 2a If our functions are arguments to other standard functions, we leave this approxima-
tion as it is. For example, cos(x(t)) would be rewritten cos(x0 + ∆x(t)). Similarly for all other
trigonometric functions and exponentials.

Step 2b If out functions are not arguments to standard functions, we rewrite the functions as

x(t) = x0 + ∆x(t) = x0

(
1 +

∆x(t)

x0

)

y(t) = y0 + ∆y(t) = y0

(
1 +

∆y(t)

y0

)

u(t) = u0 + ∆u(t) = u0

(
1 +

∆u(t)

u0

)

We rewrite the functions in this way because this is the form will will use the Taylor series on.
Here our small z will be ∆x(t)

x0
, ∆y(t)

y0
, etc.

91

Step 3 Substitute our expressions for x(t), y(t), etc. into the dynamics, and simplify where
possible.

Step 4 Using Taylor series, expand out all nonlinear terms.

Step 5 Put the Taylor series expansion into the defining differential equation and multiply out
all terms.

Step 6 Drop all second order (or higher) terms. Thus terms of the form
(

∆x(t)
x0

)2
,
(

∆x(t)
x0

) (
∆y(t)

y0

)
,

etc. will be dropped.

Step 7 Using the relationships found in step 1, try and remove all constant terms in the model.
If there are any constant terms left over, you have made an error. All of the remaining terms
should be ∆ terms.

Step 8 Find the resulting transfer function.

Example 1. Assume we have the model of a system with input u(t) and output x(t)

ẋ(t) + 3x2(t) = u(t) + 3

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation 3x2
0 = u0 + 3.

Step 2 Assume x(t) = x0

(
1 + ∆x(t)

x0

)
and u(t) =

(
1 + ∆u(t)

u0

)

Step 3 Now substitute into the dynamics and do some simplification

d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+ 3

[
x0

(
1 +

∆x(t)

x0

)]2

= u0

(
1 +

∆u(t)

u0

)
+ 3

∆ẋ(t) + 3x2
0

(
1 +

∆x(t)

x0

)2

= u0 + ∆u(t) + 3

Step 4 Expand out the only nonlinear term we have

(
1 +

∆x(t)

x0

)2

≈ 1 + 2
∆x(t)

x0

Step 5 We now substitute the expanded term into the equation, and simplify as much as possible

∆ẋ(t) + 3x2
0

[
1 + 2

∆x(t)

x0

]
≈ u0 + ∆u(t) + 3

∆ẋ(t) + 3x2
0 + 6x0∆x(t) ≈ u0 + ∆u(t) + 3

Step 6 We have no higher order terms.

92

Step 7 From step 1, we have 3x2
0 = u0 + 3. Substituting this into our equation from step 5 we

have

∆ẋ(t) + [u0 + 3] + 6x0∆x(t) ≈ u0 + ∆u(t) + 3

∆ẋ(t) + 6x0∆x(t) ≈ ∆u(t)

Step 8 Taking Laplace transforms we have

s∆X(s) + 6x0∆X(s) ≈ ∆U(s)

or

∆X(s)

∆U(s)
≈ 1

s + 6x0

Example 2. Assume we have the model of a system with input u(t) and output x(t)

2ẋ(t) +
√

x(t) = cos(u(t))

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation
√

x0 = cos(u0).

Step 2 For the square root term we will assume the form x(t) = x0

(
1 + ∆x(t)

x0

)
while for the

cosine term we will assume the form u(t) = u0 + ∆u(t)

Step 3 Now substitute into the dynamics and do some simplification

2
d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+

√√√√x0

(
1 +

∆x(t)

x0

)
= cos(u0 + ∆u(t))

2∆ẋ(t) +
√

x0

√
1 +

∆x(t)

x0

= cos(u0 + ∆u(t))

Step 4 Expand out the nonlinear terms we have

√
1 +

∆x(t)

x0

=

(
1 +

∆x(t)

x0

) 1
2

≈ 1 +
1

2

∆x(t)

x0

cos(u0 + ∆u(t)) ≈ cos(u0)−∆u(t) sin(u0)

Step 5 We now substitute the expanded term into the equation, and simplify as much as possible

2∆ẋ(t) +
√

x0

[
1 +

1

2

∆x(t)

x0

]
≈ cos(u0)−∆u(t) sin(u0)

2∆ẋ(t) +
√

x0 +
1

2
√

x0

∆x(t) ≈ cos(u0)−∆u(t) sin(u0)

Step 6 We have no higher order terms.

93

Step 7 From step 1, we have
√

x0 = cos(u0). Substituting this into our equation from step 5 we
have

2∆ẋ(t) + [cos(u0)] +
1

2
√

x0

∆x(t) ≈ cos(u0)−∆u(t) sin(u0)

2∆ẋ(t) +
1

2
√

x0

∆x(t) ≈ −∆u(t) sin(u0)

Step 8 Taking Laplace transforms we have

2s∆X(s) +
1

2
√

x0

∆X(s) ≈ −∆U(s) sin(u0)

or

∆X(s)

∆U(s)
≈ − sin(u0)

2s + 1
2
√

x0

Example 3. Assume we have the model of a system with input u(t) and output x(t)

ẋ(t) +
1√
x(t)

e−au(t) = 1

and we want to find a linearized model about the static equilibrium point.

Step 1 At equilibrium we have the equation 1√
x0

e−au0 = 1.

Step 2 For the square root term we will assume the form x(t) = x0

(
1 + ∆x(t)

x0

)
while for the

exponential term we will assume the form u(t) = u0 + ∆u(t)

Step 3 Now substitute into the dynamics and do some simplification

d

dt

[
x0

(
1 +

∆x(t)

x0

)]
+

1√
x0

(
1 + ∆x(t)

x0

)e−au0−a∆u(t) = 1

∆ẋ(t) +
e−au0

√
x0

e−a∆u(t)

√
1 + ∆x(t)

x0

= 1

Step 4 Expand out the nonlinear terms we have

1√
1 + ∆x(t)

x0

=

(
1 +

∆x(t)

x0

)− 1
2

≈ 1− 1

2

∆x(t)

x0

e−a∆u(t) ≈ 1− a∆u(t)

Step 5 We now substitute the expanded term into the equation, and simplify as much as possible

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

)
(1− a∆u(t)) ≈ 1

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

− a∆u(t) +
a

2

∆x(t)

x0

∆u(t)

)
≈ 1

94

Step 6 We drop the product ∆x(t)∆u(t) (i.e., we assume it is zero), so we have

∆ẋ(t) +
e−au0

√
x0

(
1− 1

2

∆x(t)

x0

− a∆u(t)

)
≈ 1

∆ẋ(t) +
e−au0

√
x0

− e−au0

√
x0

1

2

∆x(t)

x0

− e−au0

√
x0

a∆u(t) ≈ 1

Step 7 From step 1, we have e−au0√
x0

= 1. Substituting this into our equation from step 6 we have

∆ẋ(t)− 1

2

∆x(t)

x0

− a∆u(t) ≈ 0

Step 8 Taking Laplace transforms we have

s∆X(s)− 1

2x0

∆X(s)− a∆U(s) ≈ 0

or

∆X(s)

∆U(s)
≈ a

s− 1
2x0

95

A Matlab Commands

In this section I have listed some common Matlab commands and sections of code that you will
be using on the homework problems. You will probably want to use the help, doc, and lookfor
commands to learn more about theses various functions and commands as you go on though
this course. We will only go over some very simple uses of the commands here.

A.1 Figures

The first time you tell Matlab to plot something, it opens a new window and produces a graph.
Matlab’s default is to plot each graph in the same window, overwriting the previous graph. The
figure command is given before plotting a new graph to tell Matlab to open a new window for
a new graph.

A.2 Transfer Functions

We will make extensive use of transfer functions in this course, so we need to know how to enter
them into Matlab. In general, to enter a polynomial such as

as4 + bs3 + cs2 + ds + e

into Matlab, type

poly = [a b c d e];

where the powers are implied, only the coefficients are entered. (The semicolon at the end tell
Matlab not to regurgitate what you just told it.) Hence, if we have a rational transfer function,
such as

H(s) =
s3 + 2s

s4 + 3s3 + s + 5

we can enter the numerator and denominator polynomials separately, as

num = [1 0 2 0]; den = [1 3 0 1 5];

We will usually need to construct the transfer functions explicitly. To do this, type

H = tf(num,den)

This, without the semicolons, should display the transfer function, so you can check that you
entered the correct function. In fact, at any time you can just type H to have Matlab display
what the transfer function is.

i

A.3 Feedback Systems

Let’s assume we want to find the closed loop transfer function for the following system using
Matlab,

R(s)
- s+1

s2+2s+3
-±°

²¯
- 10

s
- s2+2

s3+2s2+1
-

Y (s)

�1
s+1

6

+-

We first need to define all of the transfer functions

Gpre = tf([1 1],[1 2 3]);

Gc = tf(10,[1 0]);

Gp = tf([1 0 2],[1 2 0 1]);

H = tf(1,[1 1]);

Next, we compute the transfer function for the feedback block using the feedback command

T = feedback(Gc*Gp,H);

Finally we add the prefilter to get the close loop transfer function

G0 = Gpre*T;

A.4 System Response to Arbitrary Inputs

We will make extensive use both the unit step response and the unit ramp response of a system
in this course. For the unit step response, we assume the system is at rest and the input is
u(t) = 1 (a constant) for all t ≥ 0, while for the unit ramp response, we assume the system is
at rest and the input is u(t) = t for all t ≥ 0.

The simplest way to determine the step response to a system is

step(H);

A figure will appear on the screen, with the step response of the system. Note that the system
will determine what it thinks are appropriate parameters. Sometimes, we want more control
and want different inputs other than a step. In that case we use the command lsim. There
are many forms for this command. In its basic form, you need to tell it a transfer function, the
input function ‘u’, and the sample times ‘t’. For example, the following sequence of commands
plots the response of the system

H(s) =
1

s2 + 2s + 1

ii

which is initially at rest (the initial conditions are 0) to an input of cos(3t) from 0 to 100 seconds
in increments of 0.05 seconds and then plots the output.

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

u = cos(3*t); % input is cos(3t) at the sampe times

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

We can (obviously) use the lsim command to determine the step response,

num=[1]; den=[1 2 1];

H = tf(num,den); % get the transfer function

t=[0:0.05:100]; % times from 0 to 100 seconds by increments of 0.05

nt = length(t); % get the length of the t array

u = ones(1,nt); % input is a sequence of 1’s

y=lsim(H,u,t); % system output is y

plot(t,y); % plot the output

The following piece of code will plot the step response of system H, showing both the system
response and the input (we generally want the system to track the input), with neat labelling.

%

% The Step Response

%

t = [0:0.1:10]; % time from 0 to 10 in increments of 0.1

u = ones(1,length(t)); % the input is a sequence of 1’s

y = lsim(H,u,t); % sumulate the friggin system

figure; % set up a new figure (window)

plot(t,y,’-’,t,u,’.-’); % plot the system response/input on one graph

grid; % put on a grid;

title(’Step Response of H’); % put on a title

xlabel(’Time (Seconds)’); % put on an x axis label

legend(’Step Response’,’Unit Step’); % put on a legend

A.5 Changing the Line Thickness

As you hopefully have figured out, Matlab allows you to chose the colors for your graphs.
However, sometimes you do not have access to a color printer, or just want to do something
different. The following section of code allows you to plot using different line thicknesses.

%

% Now do line thickness

%

figure;

hold on % this basically means everything else is on one graph

plot(t,y,’-’,’Linewidth’,4); % make the linewidth 4 (really quite large)

iii

plot(t,u,’-’,’Linewidth’,0.2); % make the linewidth 0.2 (really quite small)

legend(’output’,’input’); grid;

hold off % we are done with this graph

%

You should note that even though you are changing the line width, you can still chose both the
type of line to draw (dashed, dotted, etc) and the color. Also, this may not look so good on the
screen, but usually prints out much better with a reasonable quality printer. Also, sometimes
hold on and hold off can act really weird when you are doing many graphs. This is particularly
true if you forgot the hold off.

A.6 Poles and Zeros

For any transfer function, the poles of the system are the roots of the denominator polynomial,
while the zeros of the system are the roots of the numerator polynomial. Hence, if we have a
transfer function

G(s) =
(s + 1)(s− 1)

(s + 2)2(s + 3)(s + 4)

the poles of the system are at -2 (repeated), -3, and -4 while the zeros of the system are at -1,
+1 (and ∞, but we don’t usually talk about this). The poles of the transfer function are the
same as the eigenvalues of the system. We care about the poles of the system since they indicate
how fast the system will respond and the bandwidth of the system. The commands pole(G)
and zero(G) will return the poles and zeros of transfer function G.

A.7 Roots and Polynomials

If we want the roots of a polynomial Q assigned to a variable r , we would use the Matlab
command roots

r = roots(Q);

For example, if Q(s) = s3 + s + 1 and we wanted the roots of Q(s), we would type

Q = [1 0 1 1];

r = roots(Q);

and we would get an array

r =

0.3412 + 1.1615i

0.3412 - 1.1615i

-0.6823

If we wanted to determine the polynomial with roots at 0.3412± 1.1615j,−0.6823 we would use
the poly command

Q = poly([0.3412+1.1615*i 0.3412-1.1615*i -0.6823]);

iv

or, in our case

Q = poly(r);

or

Q = poly([r(1) r(2) r(3)]);

If we want to polynomial with roots at 0.3412± 1.1615j,−0.6823 we can just type

Q = poly([r(1) r(2)]);

A.8 Root Locus Plots

To plot the root locus of a system with open loop transfer function H(s), we use the rlocus
command,

rlocus(H);

You will be able to click on a line and determine both the value of the gain K at that point
and the corresponding closed loop pole values. If we want to know the values of the closed loop
poles at a particular value of K, say K = 10, we type

r = rlocus(H,10)

A.9 Bode Plots, Gain and Phase Margins

To determine the gain and phase margin of a system with open loop transfer function H(s), we
use the margin command

margin(H)

To create the bode plot of a system with open loop transfer function H(s), we use the bode
command

bode(H)

There are a number of useful variations on the bode command. For example, if we want to view
to bode plot over a specified range of frequencies, we type

w = logspace(0,2,100); % create 100 logarithmically spaced points

% between 1 (10^0) and 100 (10^2)

bode(H,w);

Sometimes we want the magnitude and phase of the transfer function H(s). We can use the
command

[Mag,Phase,w] = bode(H);

Mag = Mag(:);

Phase = Phase(:);

v

In this command, Matlab returns the magnitude (not in dB), phase,and frequencies the function
was evaluated at, but the magnitude and phase are stored in a weird way. The command
Mag = Mag(:) forces Matlab to put them in a column. We can also specify which frequencies
we want to evaluate the function at

[Mag,Phase] = bode(H,w);

If we then want to just plot the magnitude of the transfer function we can use

Mag = Mag(:);

Mag_dB = 20*log10(Mag);

semilogx(w,Mag_dB); grid;

vi

