
ECE-320 Linear Control Systems

Laboratory 5
System Modelling, Controller Design, and the Real World

Preview In this Lab you will first obtain a second order model of your spring/mass/damper
system, design a controller for it, implement the controller on the real system, and then com-
pare the predicted response with the actual response. You will probably make at least two
observations during this lab:

• models are not perfect, they are just guides

• real motors have real limits, which can make designing more difficult

For each of the controller types (with the exception of the P controller), you should attempt to

• produce a position error of less than 0.15

• reach steady state within 5 seconds (the faster the better)

• have as little overshoot as you can manage

I represent management, which means I expect things which may not be possible. If you cannot
meet these vague criteria, do the best you can with each controller type to meet the criteria.

Pre-Lab

1) Print out this lab and read it.

In what follows, assume we have the unity feedback system shown below. Gc(s) is the controller
that you will be implementing, ωn and ζ are estimates obtained using either time-domain or
frequency domain methods, and kclg is the system closed loop gain. Note that we are modelling
the motor as contributing only a gain to the system, and we are lumping both the plant’s gain
and the motor gain together into one parameter.

-
½¼

¾»
- Gc(s) -

Kclg
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

The standard form for a PID controller is

Gc(s) = kp + ki
1

s
+ kds



show that

a) for a PID controller in the form Gc(s) = k(s+z1)(s+z2)/s, kp = k(z1+z2), ki = kz1z2, kd = k

b) for a PI controller in the form Gc(s) = k(s + z)/s, kp = k, ki = kz, kd = 0

c) for a PD controller in the form Gc(s) = k(s + z), kp = kz, ki = 0, kd = k

We generally need to keep the kp, ki and kd less than about 0.1, though this really
depends on your system. (Sometimes I have used a ki of about 9) You need to use
the above relationships to map from poles, zeros, and gains to kp, ki, and kd.

Before we design any controller we need to first identify the system. Do not use a system you
have used before!

1. Estimate an initial second order system model using time domain analysis (using either
the log dec or fit programs).

2. Measure the frequency response (make one measurement at 1Hz, 2Hz, ..., 7 Hz, and at
least 4 points near the resonant peak)

3. Use the process data and fit bode commands to estimate the gain of the system.

4. Use the opt fit bode command to fine tune the system model.

5. Determine the closed loop system gain Kclg



Estimating the Closed Loop Gain Kclg

0. Set the units

Click Setup → User Units and set the units to cm.

1. Setting up the controller

Click Setup → Control Algorithm. Be sure the system is set for Continuous Time. Select PID
under Control Algorithm. Click on Setup Algorithm. Be sure Feedback is from Encoder 1.
Set kp to a small number (less than or equal to 0.05) and be sure kd = 0 and ki = 0. Then click OK.
Next Click Implement Algorithm. The click OK.

2. Setting up the closed loop trajectory

Click Command → Trajectory. Select Step and click on Setup. Select Closed Loop Step and
set Step Size to 1 to 2 cm. Be sure to record this step size (we’ll refer to the amplitude as Amp
below). Set the Dwell Time to something like 2000 ms, this is the time the system will be recording
data. Finally click OK, then OK and you should be back to the main menu.

3. Executing the closed loop step

Click Command Execute. A menu box will come up with a number of options, and a big green Run
button. Click on the Run button. When the system has finished collecting data, a box will appear
indicating the how many sample points of data have been collected. (If you have hit a stop, the system
stops recording data. This usually means you’re input amplitude was too large or kp was too large. )
Click on OK to get back to the main menu.

4. Determining the steady state value

Click Plotting → Setup Plot, or just Plotting Data → Plot Data. Look at the steady state
value (yss). You may need to change the dwell time if your system has not reached steady state.

5. Estimating the closed loop gain

Estimate the closed loop gain Kclg using the formula: Kclg = yss

kp

1
Amp−yss

. You need to go through this
procedure at least three times for each configuration. You must use at least two different values of kp

and two different values of input amplitude Amp. If none of the steady state values is larger than 0.4
cm, increase either kp or Amp. Average the three results to get your Kclg (they should be similar).

6. Estimating the transfer function

The final plant transfer function we will use is then

Gp(s) =
Kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

This is the transfer function to be used in both Mathlab’s sisotool and in the closed loop response
program.



P Controller First

1. Choose one of the values for kp that you used to get the closed loop gain, Kclg. This type
of controller will not work very well for this system, so we are just going to use it to go
through all of the steps you will need for the other controllers.

2. Choose the amplitude of the input that goes with this value of kp.

3. Implement this gain (kp) and the amplitude and run the ECP system.

4. You may need to let the real system run for 5 seconds or more to reach steady state.

5. Export the step response of the real system and edit the data so Matlab can read it.

6. Use the program closed loop response to plot both the predicted closed loop response
(based on the system model) and the true closed loop response (the real system). The
arguments to this program are

• Amp = the amplitude of the step (whatever you had the real system do, usually 0.5
or 1 cm)

• Gp = the plant transfer function

• Gc = the controller transfer function

• final time = the final time on the plot. Use this to try and make nice plots (zoom
in on where things are happening). For example, if your system reaches steady state
after 0.5 seconds, only plot out to about 1 second or so, do not plot out for 5 seconds.

• filename = the name of the (edited) file that has the measured step response of the
real system. This should be in single quotes.

You should get a figure with the predicted response of the system and the actual response of the
system. You need to include this plot in your report and a similar plot for each of the controllers
you implement.



I, PI, PD, and PID Controllers

For each of the following controller types, you should attempt to

• produce a position error of less than 0.15

• reach steady state within 5 seconds (the faster the better)

• have as little overshoot as you can manage

Go though the following steps to design, implement, and compare the predicted response with
the measured response for an I, PI, PD and PID controller.

1. Design one controller using the model developed above and Matlab’s sisotool.

• Try and keep all kp and kd gains less than about 0.1 (it’s OK if they are larger, just
be prepared for the motor to buzz and the controller to not work) Look at the prelab
for the relationships between the controller poles and zeros and kp, ki and kd. If your
controller makes the motor buzz and doesn’t work, go back to sisotool and design
another one. Do not implement a controller on the system unless you have simulated
it.

• Be aware that you enter the control parameters in the order kp, kd, then ki

• Be sure to zero out the gains you are not using (i.e., if you are using a PI controller,
be sure kd is set to zero)

2. You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

3. You may need to rephase the motor. Click Utility → Rephase Motor

4. Be sure to Implement the controller you have designed.

5. Try and track a step with an input amplitude of 1 cm.

6. You may need to let the real system run for 5 seconds or more to reach steady state.

7. Export the step response of the real system and edit the data so Matlab can read it.

8. Use the program closed loop response to plot both the predicted closed loop response
(based on the system model) and the true closed loop response (the real system). The
arguments to this program are

• Amp = the amplitude of the step (whatever you had the real system do, usually 0.5
or 1 cm)

• Gp = the plant transfer function

• Gc = the controller transfer function



• final time = the final time on the plot. Use this to try and make nice plots (zoom
in on where things are happening). For example, if your system reaches steady state
after 0.5 seconds, only plot out to about 1 second or so, do not plot out for 5 seconds.

• filename = the name of the (edited) file that has the measured step response of the
real system. This should be in single quotes.

Memo

Your memo should compare (briefly) the response of the model and the response of the real sys-
tem for the different types of controllers. You should also indicate if any of the controllers could
not be made to work, and why. Finally you should have some description of the configuration
of the system you were trying to control.

You should include the following items as attachments. Most of these are figures which should
have reasonable captions.

• The time domain estimate of ζ and ωn (from log-decrement)

• The initial frequency response of the system (the best you can do without changing ζ or
ωn).

• The optimized frequency response of the system.

• The data used to determine the closed loop gain, Kclg.

• The predicted and actual response of the system to each of the different controllers.


