
ECE-320 Linear Control Systems

Laboratory 3
Model Matching (ITAE and Quadratic Optimal)

Preview In this Lab you will obtain a model of a one degree of freedom system using the log
decrement method, determine the closed loop gain, and then use model matching techniques to
produce a desired response. You will analyze only one system in this lab.

Pre-Lab

1) Print out this lab and read it.

In what follows, assume we have the unity feedback system shown below. Gc(s) is the controller
that you will be implementing, ωn and ζ are estimates obtained using either time-domain or
frequency domain methods, and Kclg is the system closed loop gain. Note that we are modelling
the motor as contributing only a gain to the system, and we are lumping both the plant’s gain
and the motor gain together into one parameter.

-
½¼

¾»
- Gc(s) -

Kclg
1

ω2
n
s2+ 2ζ

ωn
s+1

-

6

+
-

2) Show that for a proportional controller, where

Gc(s) = kp

the steady state output yss due to a step input of amplitude Amp is given by

yss =
Amp kpKclg

1 + kpKclg

which can be rewritten as

Kclg =
yss

kp

1

Amp− yss

This is the expression we will use to estimate the closed loop system gain Kclg.

1



We need to first identify the system:

1. Estimate an initial second order system model using time domain analysis (using the
log dec program).

2. Measure the frequency response (make one measurement at 1Hz, 2Hz, ..., 7 Hz, and at
least 4 points near the resonant peak)

3. Use the process data and fit bode commands to estimate the gain of the system.

4. Use the opt fit bode command to fine tune the system model.

5. Determine the closed loop system gain Kclg (to be described below)

2



Estimating the Closed Loop Gain Kclg

0. Set the units

Click Setup → User Units and set the units to cm.

1. Setting up the controller

Click Setup → Control Algorithm. Be sure the system is set for Continuous Time. Select
PID under Control Algorithm. Click on Setup Algorithm. Be sure Feedback is from
Encoder 1. Set kp to a small number (less than or equal to 0.05) and be sure kd = 0 and
ki = 0. Then click OK. Next Click Implement Algorithm. The click OK.

2. Setting up the closed loop trajectory

Click Command → Trajectory. Select Step and click on Setup. Select Closed Loop Step
and set Step Size to 1 to 2 cm. Be sure to record this step size (we’ll refer to the amplitude as
Amp below). Set the Dwell Time to something like 2000 ms, this is the time the system will
be recording data. Finally click OK, then OK and you should be back to the main menu.

3. Executing the closed loop step

Click Command Execute. A menu box will come up with a number of options, and a big
green Run button. Click on the Run button. When the system has finished collecting data,
a box will appear indicating the how many sample points of data have been collected. (If you
have hit a stop, the system stops recording data. This usually means you’re input amplitude
was too large or kp was too large. ) Click on OK to get back to the main menu.

4. Determining the steady state value

Click Plotting → Setup Plot, or just Plotting Data → Plot Data. Look at the steady
state value (yss). You may need to change the dwell time if your system has not reached steady
state.

5. Estimating the closed loop gain

Estimate the closed loop gain Kclg using the formula derived in the prelab: Kclg = yss

kp

1
A−yss

.

You need to go through this procedure at least three times. You must use at least two different
values of kp and two different values of input amplitude Amp. If none of the steady state values
is larger than 0.4 cm, increase either kp or Amp. Average the three results to get your Kclg

(they should be similar). For the trials I’ve run, I’ve got Kclg between 10 and 20. Your’s may
be outside this range though.

3



Model Matching with Zero Position Error ITAE Models

Our general goals are as follows:

• track a step input of amplitude 1 cm

• produce a position error of less than 0.05

• reach steady state within 0.4 seconds (the faster the better)

• have as little overshoot as you can manage

The second, third, and fourth order zero position error ITAE systems have the following closed
loop transfer functions

G0(s) =
ω2

0

s2 + 1.4ω0s + ω2
0

G0(s) =
ω3

0

s3 + 1.75ω0s2 + 2.15ω2
0s + ω3

0

G0(s) =
ω4

0

s4 + 2.1ω0s3 + 3.4ω2
0s

2 + 2.7ω3
0s + ω4

0

Keep in mind, the larger ω0, the faster the system responds and the harder the motor has to
work. I have used values of ω0 from 10 to 50, and lived to tell the tale..

Once we know the order of ITAE system we want (which should be at least as large as that of
our plant), we can compute the controller as

Gc(s) =
G0(s)

Gp(s)(1−G0(s))

The program ITAE 0 (see below) with do this for you. You need to choose ω0 and an order of
ITAE system, look at the model results, implement the controller on the ECP system, and then
compare the simulated and modelled results.

Specifically, you need to:

1. Construct your plant transfer function in the Matlab workspace. For this part, use the
form

Gp(s) =
Kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

2. Run the program ITAE 0. This routine has the input arguments

• The amplitude of the step input

• The plant transfer function Gp(s)

4



• The value of ω0

• The order of the ITAE system (2-4)

• The length of time to plot the results

• The filename with the ECP data (in single quotes), used to compare the model and
the real system. If there is no file, type ”.

3. If the performance of the model is acceptable, you need to implement the controller on
the ECP system. To do this1

(a) Click Setup → Control Algorithm

(b) Select Dynamic Forward Path

(c) Click Setup Algorithm

(d) Click Import

(e) Select values.par and click open. You should see values entered into the R and S
arrays. These should look like the values the program ITAE 0 spits to the screen.

(f) Click OK

(g) Click Implement Algorithm

(h) Click OK

4. Once the ECP system has run acceptably, you need to export the data, edit it, and the
rerun ITAE 0 to produce a plot of the predicted response and the model response.

5. Write down the controller Gc(s) for each system, so you can refer to them later.

6. You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

7. You may need to rephase the motor. Click Utility → Rephase Motor

8. Be sure to Implement the controller you have designed.

You should try three different values of ω0 with a second order ITAE model, and then use one
of these values of ω0 with the third and fourth order ITAE model. For each of these you should
have a plot of the predicted and real response.

1I have tried to automate this a bit. However, if you really want to enter all the numbers by hand, be my
guest. I did not mean to deprive you...

5



Model Matching with Zero Velocity Error ITAE Models

Our general goals are as follows:

• track a step input of amplitude 1 cm

• produce a position error of less than 0.05

• reach steady state within 0.4 seconds (the faster the better)

• have as little overshoot as you can manage

The second, third, and fourth order velocity position error ITAE systems have the following
closed loop transfer functions

G0(s) =
3.2ω0s + ω2

0

s2 + 3.2ω0s + ω2
0

G0(s) =
3.25ω2

0s + ω3
0

s3 + 1.75ω0s2 + 3.25ω2
0s + ω3

0

G0(s) =
5.14ω3

0s + ω4
0

s4 + 2.41ω0s3 + 4.93ω2
0s

2 + 5.14ω3
0s + ω4

0

Once we know the order of ITAE system we want (which should be at least as large as that of
our plant), we can compute the controller as

Gc(s) =
G0(s)

Gp(s)(1−G0(s))

The program ITAE 1 (see below) with do this for you. You need to choose ω0 and an order of
ITAE system, look at the model results, implement the controller on the ECP system, and then
compare the simulated and modelled results.

Specifically, you need to:

1. Construct your plant transfer function in the Matlab workspace. For this part, use the
form

Gp(s) =
Kclg

1
ω2

n
s2 + 2ζ

ωn
s + 1

2. Run the program ITAE 1. This routine has the input arguments

• The amplitude of the step input

• The plant transfer function Gp(s)

• The value of ω0

• The order of the ITAE system (2-4)

• The length of time to plot the results

6



• The filename with the ECP data (in single quotes), used to compare the model and
the real system. If there is no file, type ”.

3. If the performance of the model is acceptable, you need to implement the controller on
the ECP system. To do this:

(a) Click Setup → Control Algorithm

(b) Select Dynamic Forward Path

(c) Click Setup Algorithm

(d) Click Import

(e) Select values.par and click open. You should see values entered into the R and S
arrays. These should look like the values the program ITAE 1 spits to the screen.

(f) Click OK

(g) Click Implement Algorithm

(h) Click OK

4. Once the ECP system has run acceptably, you need to export the data, edit it, and the
rerun ITAE 1 to produce a plot of the predicted response and the model response.

5. Write down the controller Gc(s) for each system, so you can refer to them later.

6. You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

7. You may need to rephase the motor. Click Utility → Rephase Motor

8. Be sure to Implement the controller you have designed.

You should try three different values of ωo with a second order ITAE model, and then use one
of these values of ω0 with the third and fourth order ITAE model. For each of these you should
have a plot of the predicted and real response. You will probably notice that the system is much
slower with the zero velocity error ITAE systems than with the zero position error systems (with
comparable values of ω0)

7



Model Matching with Quadratic Optimal Systems

Our general goals are as follows:

• track a step input of amplitude 1 cm

• produce a position error of less than 0.05

• reach steady state within 0.4 seconds (the faster the better)

• have as little overshoot as you can manage

These systems minimize the performance index

J =
∫ ∞

0

[
q(y(t)− r(t))2 + u(t)2

]
dt

where r(t) is the input (reference signal), y(t) is the system output, u(t) is the control effort,
and q is a weighting factor. The program quadratic will automatically determine the optimal
G0(s) for you, once you have determined the value of q you want. Once we know G0(s), we can
compute the controller as

Gc(s) =
G0(s)

Gp(s)(1−G0(s))

The program quadratic will do this for you. You need to choose q, look at the model results,
implement the controller on the ECP system, and then compare the simulated and modelled
results.

Specifically, you need to:

1. Construct your plant transfer function in the Matlab workspace. For this part, use the
form

Gp(s) =
Kclgω

2
n

s2 + 2ζωns + ω2
n

2. Run the program quadratic. This routine has the input arguments

• The amplitude of the step input

• The plant transfer function Gp(s)

• The value of q. (You should try using values of q less than 0.1 or so. If q is too large
the model converges to the reference value very quickly, but the real system no longer
matches the model, and, in fact, produces an increasingly poor result.)

• The length of time to plot the results

• The filename with the ECP data (in single quotes), used to compare the model and
the real system. If there is no file, type ”.

8



3. If the performance of the model is acceptable, you need to implement the controller on
the ECP system. To do this:

(a) Click Setup → Control Algorithm

(b) Select Dynamic Forward Path

(c) Click Setup Algorithm

(d) Click Import

(e) Select values.par and click open. You should see values entered into the R and S
arrays. These should look like the values the program quadratic spits to the screen.

(f) Click OK

(g) Click Implement Algorithm

(h) Click OK

4. Once the ECP system has run acceptably, you need to export the data, edit it, and the
rerun quadratic to produce a plot of the predicted response and the model response.

5. Write down the controller Gc(s) for each system, so you can refer to them later.

6. You may need to reset the controller often, such as every time you want to implement
a new controller. Click Utility → Reset Controller. Only do this before you have
implemented a controller.

7. You may need to rephase the motor. Click Utility → Rephase Motor

8. Be sure to Implement the controller you have designed.

You should try three different values of q. For each of these you should have a plot of the
predicted and real response. You will probably notice that the model and real system do not
match very well as the values for q get larger.

9



Memo Your memo should compare (briefly) the response of the model and the response of the
real system. How close is the predicted behavior to the behavior of the real system? You should
have some description of the configuration of the system you were trying to control. Specifically,
it should include:

1. A table showing kp, yss, Amp, and Kclg for the three tries at estimating Kclg.

2. The values of ζ, ωn and the final value of Kclg for the system you modelled.

3. For the system analyzed you should have (as a minimum):

• 5 plots for the ITAE zero position error systems

• 5 plots for the ITAE zero velocity error systems

• 3 plots for the quadratic optimal systems

4. A brief discussion of at least one fundamental difference between the controllers designed
using the ITAE methods and the controllers designed using the quadratic optimal methods.
For which type of controller do you think you need a more accurate model?

10


