ECE-320 Linear Control Systems
 Homework 9

Due: Thursday November 11, 2004

1 For a unity feedback system with plant transfer function

$$
G(s)=\frac{100}{s(0.04 s+1)}
$$

a) Determine a lead compensator so that the phase margin is approximately 50 degrees (to within ± 5 degrees). Use the margin command to be sure you have met the phase requirements, and plot the step response of the system.
b) Determine a lead compensator so that the phase margin is approximately 65 degrees (to within ± 5 degrees). Use the margin command to be sure you have met the phase requirements, and plot the step response of the system.
c) Estimate the percent overshoot and the settling time for both systems.

2 For a unity feedback system with plant transfer function

$$
G(s)=\frac{4}{s(s+1)(s+2)}
$$

Determine a lag compensator so that

- $K_{v}=2$
- the phase margin is approximately 50 degrees (to within ± 5 degrees)

Use the margin command in Matlab to be sure you have meet the requirements.

3 For a unity feedback system with plant transfer function

$$
G(s)=\frac{4}{s(s+1)(s+2)}
$$

Determine a lead compensator so that

- $K_{v}=2$
- the phase margin is approximately 50 degrees (to within ± 5 degrees)
- the settling time is less than 4 seconds (2% criteria)

Use both the step response and the margin command in Matlab to be sure you have meet the requirements. (You will probably need two compensators for this one.)

4 For a unity feedback system with plant transfer function

$$
G(s)=\frac{1}{(s+2)^{2}}
$$

Determine a lag compensator so that

- $e_{p} \leq 0.04$
- the phase margin is approximately 50 degrees (to within ± 5 degrees)

Use the margin command in Matlab to be sure you have meet the requirements.
5 For the system described by

$$
\dot{x}+e^{-x} \cos (y)=\dot{y}+y^{2}
$$

show that the linearized transfer function is

$$
H(s)=\frac{\Delta Y(s)}{\Delta X(s)}=\frac{s-e^{-x_{0}} \cos \left(y_{0}\right)}{s+e^{-x_{0}} \sin \left(y_{0}\right)+2 y_{0}}
$$

6 For the system described by

$$
\dot{y}(t)+\frac{1}{\sqrt{x(t) y(t)}}=y^{2}(t)
$$

show that the linearized transfer function is

$$
G(s)=\frac{\frac{1}{2} \frac{1}{x_{0} \sqrt{x_{0} y_{0}}}}{s-\frac{1}{2} \frac{1}{y_{0} \sqrt{x_{0} y_{0}}}-2 y_{0}}
$$

7 For the system with transfer function given by

$$
H(s)=\frac{3}{(s+1)^{2}(s+2)}
$$

a) find the unit step response of the system $y(t)$
b) determine the position error e_{p}.

Ans. $y(t)=\frac{3}{2} u(t)-3 t e^{-t} u(t)-\frac{3}{2} e^{-2 t} u(t), e_{p}=-0.5$, though $e_{p}=0.5$ is OK too. Note the coefficient of $e^{-t} u(t)$ happens to be zero in this case.)

