ECE-320 Linear Control Systems
 Homework 8

Due: Tuesday November 2, 2004

If matrix P is given as

$$
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Then

$$
P^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

and the determinant of P is given by $a d-b c$.
The general for for writing a continuous time state variable system is

$$
\begin{aligned}
& \underline{\dot{x}}(t)=A \underline{x}(t)+B \underline{u}(t) \\
& \underline{y}(t)=C \underline{x}(t)+D \underline{u}(t)
\end{aligned}
$$

Now assume we are using state variable feedback, so that $\underline{u}(t)=k_{p f} \underline{r}(t)-\underline{k x}(t)$. Here $\underline{r}(t)$ is our new reference input, $k_{p f}$ is a scaling factor, and $\underline{k}=\left[k_{1} k_{2}\right]$ is the feedback gain matrix. With this state variable feedback, we have the system

$$
\underline{\dot{x}}(t)=A \underline{x}(t)+B\left(k_{p \underline{r}} \underline{r}(t)-\underline{k x}(t)\right)
$$

or

$$
\underline{\dot{x}}(t)=\tilde{A} \underline{x}(t)+\tilde{B} \underline{r}(t)
$$

where $\underline{r}(t)$ is the new input. For $D=0$, the transfer matrix is given by

$$
G(s)=C\left[(s I-\tilde{A})^{-1}\right] \tilde{B}
$$

For each of the systems below,

- determine the transfer function when there is state variable feedback
- determine if k_{1} and k_{2} exist to allow us to place the poles arbitrarily. That is, can we make the denominator look like $s^{2}+a_{1} s+a_{2}$ for any a_{1} and any a_{2}.
You can use Maple to check your answers, but I expect you to be able to do this without Maple.

1 Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Ans. $G(s)=\frac{(s-1) k_{p f}}{(s-1)\left(s-1+k_{2}\right)}$
2 Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Ans. $G(s)=\frac{s k_{p f}}{s^{2}+\left(k_{2}-1\right) s+k_{1}}$
3 Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], D=0
$$

Ans. $G(s)=\frac{k_{p f}}{s^{2}+\left(k_{2}-1\right) s+\left(k_{1}-1\right)}$
4 Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], D=0
$$

Ans. $G(s)=\frac{(s+1) k_{p f}}{\left(s+k_{1}\right)\left(s+k_{2}\right)-\left(k_{1}-1\right)\left(k_{2}-1\right)}$

5 Preparation for Lab:

Consider the following model of the two DOF system we will be using.

a) Draw freebody diagrams of the forces acting on the two masses.
b) The equations of motion for the two masses can be written

$$
\begin{align*}
& m_{1} \ddot{x}_{1}+c_{1} \dot{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}=F+k_{2} x_{2} \tag{1}\\
& m_{2} \ddot{x}_{2}+c_{2} \dot{x}_{2}+\left(k_{2}+k_{3}\right) x_{2}=k_{2} x_{1} \tag{2}
\end{align*}
$$

If we define $q_{1}=x_{1}, q_{2}=\dot{x}_{1}, q_{3}=x_{2}$, and $q_{4}=\dot{x}_{2}$, show that we get the following state equations

$$
\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2} \\
\dot{q}_{3} \\
\dot{q}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\left(\frac{k_{1}+k_{2}}{m_{1}}\right) & -\left(\frac{c_{1}}{m_{1}}\right) & \left(\frac{k_{2}}{m_{1}}\right) & 0 \\
0 & 0 & 0 & 1 \\
\left(\frac{k_{2}}{m_{2}}\right) & 0 & -\left(\frac{k_{2}+k_{3}}{m_{2}}\right) & -\left(\frac{c_{2}}{m_{2}}\right)
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{m_{1}} \\
0 \\
0
\end{array}\right] F
$$

In order to get the A and B matrices, we need to determine all of the quantities in the above matrices.
c) Now we want to rewrite equations 1 and 2 in terms of $\zeta_{1}, \omega_{1}, \zeta_{2}$, and ω_{2} as

$$
\begin{align*}
\ddot{x}_{1}+2 \zeta_{1} \omega_{1} \dot{x}_{1}+\omega_{1}^{2} x_{1} & =\frac{k_{2}}{m_{1}} x_{2}+\frac{1}{m_{1}} F \tag{3}\\
\ddot{x}_{2}+2 \zeta_{2} \omega_{2} \dot{x}_{2}+\omega_{2}^{2} x_{2} & =\frac{k_{2}}{m_{2}} x_{1} \tag{4}
\end{align*}
$$

We will get our initial estimates of the parameters $\zeta_{1}, \omega_{1}, \zeta_{2}$ and ω_{2} using the log-decrement method. Assuming we measure these parameters, show how $A_{2,1}, A_{2,2}, A_{4,3}$ and $A_{4,4}$ can be determined.
d) By taking the Laplace transforms of equations 3 and 4, show that we get the following transfer function

$$
\begin{equation*}
\frac{X_{2}(s)}{F(s)}=\frac{\left(\frac{k_{2}}{m_{1} m_{2}}\right)}{\left(s^{2}+2 \zeta_{1} \omega_{1} s+\omega_{1}^{2}\right)\left(s^{2}+2 \zeta_{2} \omega_{2} s+\omega_{2}^{2}\right)-\frac{k_{2}^{2}}{m_{1} m_{2}}} \tag{5}
\end{equation*}
$$

e) It is more convenient to write this transfer function as

$$
\begin{equation*}
\frac{X_{2}(s)}{F(s)}=\frac{\left(\frac{k_{2}}{m_{1} m_{2}}\right)}{\left(s^{2}+2 \zeta_{a} \omega_{a} s+\omega_{a}^{2}\right)\left(s^{2}+2 \zeta_{b} \omega_{b} s+\omega_{b}^{2}\right)} \tag{6}
\end{equation*}
$$

By equating coefficients of powers of s in the denominators in these two transfer functions (equations 5 and 6), you should be able to write down four equations. The equations corresponding to the coefficients of s^{3}, s^{2}, and s do not seem to give us any new information, but they will be used later to get consistent estimates of ζ_{1} and ω_{1}. The equation for the coefficients of s^{0} will give us a new relationship for $\frac{k_{2}^{2}}{m_{1} m_{2}}$ in terms of parameters we will be measuring.
f) We will actually be fitting the frequency response data to the following form of the transfer function:

$$
\begin{equation*}
\frac{X_{2}(s)}{F(s)}=\frac{K_{2}}{\left(\frac{1}{\omega_{a}^{2}} s^{2}+\frac{2 \zeta_{a}}{\omega_{a}} s+1\right)\left(\frac{1}{\omega_{b}^{2}} 2^{2}+\frac{2 \zeta_{b}}{\omega_{b}} s+1\right)} \tag{7}
\end{equation*}
$$

What is K_{2} in terms of the parameters given in equation 6 ?
g) Using equation 6 and the Laplace transform of equation 4, show that we can write

$$
\begin{equation*}
\frac{X_{1}(s)}{F(s)}=\frac{\frac{1}{m_{1}}\left(s^{2}+2 \zeta_{2} \omega_{2} s+\omega_{2}^{2}\right)}{\left(s^{2}+2 \zeta_{a} \omega_{a} s+\omega_{a}^{2}\right)\left(s^{2}+2 \zeta_{b} \omega_{b} s+\omega_{b}^{2}\right)} \tag{8}
\end{equation*}
$$

h) This equation is more convenient to write in the form

$$
\begin{equation*}
\frac{X_{1}(s)}{F(s)}=\frac{K_{1}\left(\frac{1}{\omega_{2}^{2}} s^{2}+\frac{2 \zeta_{2}}{\omega_{2}} s+1\right)}{\left(\frac{1}{\omega_{a}^{2}} s^{2}+\frac{2 \zeta_{a}}{\omega_{a}} s+1\right)\left(\frac{1}{\omega_{b}^{2}} s^{2}+\frac{2 \zeta_{b}}{\omega_{b}} s+1\right)} \tag{9}
\end{equation*}
$$

What is K_{1} in terms of the quantities given in equation 8 ?
i) Show that

$$
\begin{equation*}
A_{4,1}=\frac{k_{2}}{m_{2}}=\frac{K_{2}}{K_{1}} \omega_{2}^{2} \tag{10}
\end{equation*}
$$

j) Show that

$$
\begin{equation*}
A_{2,3}=\frac{k_{2}}{m_{1}}=\frac{\omega_{1}^{2} \omega_{2}^{2}-\omega_{a}^{2} \omega_{b}^{2}}{A_{4,1}} \tag{11}
\end{equation*}
$$

k) All that's left is to find $\frac{1}{m_{1}}$, which is b_{2}. It's important to understand that this parameter also includes "scaling" on $F(s)$. Now assume we look at the closed loop response to a simple proportional type controller. Hence we have the system shown below:

For a step response of amplitude $A m p$, show that the steady state value of $x_{2}(t), x_{2, s s}$ is

$$
\begin{equation*}
x_{2, s s}=\frac{K_{2} k_{p} A m p}{1+K_{2} k_{p}} \tag{12}
\end{equation*}
$$

(Hint: It's easiest to use equation 7 for X_{2} / F)
and that by rearranging this equation we get

$$
\begin{equation*}
b_{2}=\frac{1}{m_{1}}=\frac{x_{2, s s}}{k_{p}\left(A m p-x_{2, s s}\right)} \frac{\omega_{a}^{2} \omega_{b}^{2}}{A_{4,1}} \tag{13}
\end{equation*}
$$

Summary

1) Fit frequency response data to

$$
\begin{equation*}
\frac{X_{2}(s)}{F(s)}=\frac{K_{2}}{\left(\frac{1}{\omega_{a}^{2}} s^{2}+\frac{2 \zeta_{a}}{\omega_{a}} s+1\right)\left(\frac{1}{\omega_{b}^{2}} 2^{2}+\frac{2 \zeta_{b}}{\omega_{b}} s+1\right)} \tag{14}
\end{equation*}
$$

this will give us estimates for $K_{2}, \zeta_{a}, \omega_{a}, \zeta_{b}$, and ω_{b}.
2) Using the above parameters, fit frequency response data to

$$
\begin{equation*}
\frac{X_{1}(s)}{F(s)}=\frac{K_{1}\left(\frac{1}{\omega_{2}^{2}} s^{2}+\frac{2 \zeta_{2}}{\omega_{2}} s+1\right)}{\left(\frac{1}{\omega_{a}^{2}} s^{2}+\frac{2 \zeta_{a}}{\omega_{a}} s+1\right)\left(\frac{1}{\omega_{b}^{2}} s^{2}+\frac{2 \zeta_{b}}{\omega_{b}} s+1\right)} \tag{15}
\end{equation*}
$$

This will give us estimates for $K_{1}, \zeta_{2}, \omega_{2}$.
3) Using the relationships derived in part 8 , find the values of ζ_{1} and ω_{1} consistent with the rest of the parameters. Note that if the estimate of ζ_{1} is less than one fourth the estimate determined by the log-decrement method (initial estimate), the value of ζ_{1} is set to one fourth the initial estimate.
4) Estimate all of the parameters in A.
5) Look at the step response to estimate b_{2}.

