
ECE-320 Linear Control Systems
Homework 8

Due: Tuesday November 2, 2004

If matrix P is given as

P =

[
a b
c d

]

Then

P−1 =
1

ad− bc

[
d −b
−c a

]

and the determinant of P is given by ad− bc.

The general for for writing a continuous time state variable system is

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Now assume we are using state variable feedback, so that u(t) = kpfr(t)−kx(t). Here r(t) is
our new reference input, kpf is a scaling factor, and k = [k1 k2] is the feedback gain matrix.
With this state variable feedback, we have the system

ẋ(t) = Ax(t) + B(kpfr(t)− kx(t))

or

ẋ(t) = Ãx(t) + B̃r(t)

where r(t) is the new input. For D = 0, the transfer matrix is given by

G(s) = C
[
(sI − Ã)−1

]
B̃

For each of the systems below,

• determine the transfer function when there is state variable feedback

• determine if k1 and k2 exist to allow us to place the poles arbitrarily. That is, can we
make the denominator look like s2 + a1s + a2 for any a1 and any a2.

You can use Maple to check your answers, but I expect you to be able to do this without
Maple.



1 Let

A =

[
1 0
1 1

]
, B =

[
0
1

]
, C = [0 1] , D = 0

Ans. G(s) =
(s−1)kpf

(s−1)(s−1+k2)

2 Let

A =

[
0 1
0 1

]
, B =

[
0
1

]
, C = [0 1] , D = 0

Ans. G(s) =
skpf

s2+(k2−1)s+k1

3 Let

A =

[
0 1
1 1

]
, B =

[
0
1

]
, C = [1 0] , D = 0

Ans. G(s) =
kpf

s2+(k2−1)s+(k1−1)

4 Let

A =

[
0 1
1 0

]
, B =

[
1
1

]
, C = [0 1] , D = 0

Ans. G(s) =
(s+1)kpf

(s+k1)(s+k2)−(k1−1)(k2−1)



5 Preparation for Lab:

Consider the following model of the two DOF system we will be using.

c c

m m

kk k1 2 3

1 2

1 2

F(t)

x  (t)1
x  (t)2

a) Draw freebody diagrams of the forces acting on the two masses.

b) The equations of motion for the two masses can be written

m1ẍ1 + c1ẋ1 + (k1 + k2)x1 = F + k2x2 (1)

m2ẍ2 + c2ẋ2 + (k2 + k3)x2 = k2x1 (2)

If we define q1 = x1, q2 = ẋ1, q3 = x2, and q4 = ẋ2, show that we get the following state
equations




q̇1

q̇2

q̇3

q̇4


 =




0 1 0 0

−
(

k1+k2

m1

)
−

(
c1
m1

) (
k2

m1

)
0

0 0 0 1(
k2

m2

)
0 −

(
k2+k3

m2

)
−

(
c2
m2

)







q1

q2

q3

q4


 +




0
1

m1

0
0


 F

In order to get the A and B matrices, we need to determine all of the quantities in the above
matrices.

c) Now we want to rewrite equations 1 and 2 in terms of ζ1, ω1, ζ2, and ω2 as

ẍ1 + 2ζ1ω1ẋ1 + ω2
1x1 =

k2

m1

x2 +
1

m1

F (3)

ẍ2 + 2ζ2ω2ẋ2 + ω2
2x2 =

k2

m2

x1 (4)



We will get our initial estimates of the parameters ζ1, ω1, ζ2 and ω2 using the log-decrement
method. Assuming we measure these parameters, show how A2,1, A2,2, A4,3 and A4,4 can be
determined.

d) By taking the Laplace transforms of equations 3 and 4, show that we get the following
transfer function

X2(s)

F (s)
=

(
k2

m1m2

)

(s2 + 2ζ1ω1s + ω2
1)(s

2 + 2ζ2ω2s + ω2
2)− k2

2

m1m2

(5)

e) It is more convenient to write this transfer function as

X2(s)

F (s)
=

(
k2

m1m2

)

(s2 + 2ζaωas + ω2
a)(s

2 + 2ζbωbs + ω2
b )

(6)

By equating coefficients of powers of s in the denominators in these two transfer functions
(equations 5 and 6), you should be able to write down four equations. The equations cor-
responding to the coefficients of s3, s2, and s do not seem to give us any new information,
but they will be used later to get consistent estimates of ζ1 and ω1. The equation for the

coefficients of s0 will give us a new relationship for
k2
2

m1m2
in terms of parameters we will be

measuring.

f) We will actually be fitting the frequency response data to the following form of the transfer
function:

X2(s)

F (s)
=

K2

( 1
ω2

a
s2 + 2ζa

ωa
s + 1)( 1

ω2
b
s2 + 2ζb

ωb
s + 1)

(7)

What is K2 in terms of the parameters given in equation 6?

g) Using equation 6 and the Laplace transform of equation 4, show that we can write

X1(s)

F (s)
=

1
m1

(s2 + 2ζ2ω2s + ω2
2)

(s2 + 2ζaωas + ω2
a)(s

2 + 2ζbωbs + ω2
b )

(8)

h) This equation is more convenient to write in the form

X1(s)

F (s)
=

K1(
1

ω2
2
s2 + 2ζ2

ω2
s + 1)

( 1
ω2

a
s2 + 2ζa

ωa
s + 1)( 1

ω2
b
s2 + 2ζb

ωb
s + 1)

(9)



What is K1 in terms of the quantities given in equation 8?

i) Show that

A4,1 =
k2

m2

=
K2

K1

ω2
2 (10)

j) Show that

A2,3 =
k2

m1

=
ω2

1ω
2
2 − ω2

aω
2
b

A4,1

(11)

k) All that’s left is to find 1
m1

, which is b2. It’s important to understand that this parameter
also includes “scaling” on F (s). Now assume we look at the closed loop response to a simple
proportional type controller. Hence we have the system shown below:

-
½¼

¾»
- kp

- X2
F

-

6

+
-

For a step response of amplitude Amp, show that the steady state value of x2(t), x2,ss is

x2,ss =
K2kpAmp

1 + K2kp

(12)

(Hint: It’s easiest to use equation 7 for X2/F )

and that by rearranging this equation we get

b2 =
1

m1

=
x2,ss

kp(Amp− x2,ss)

ω2
aω

2
b

A4,1

(13)



Summary

1) Fit frequency response data to

X2(s)

F (s)
=

K2

( 1
ω2

a
s2 + 2ζa

ωa
s + 1)( 1

ω2
b
s2 + 2ζb

ωb
s + 1)

(14)

this will give us estimates for K2, ζa, ωa, ζb, and ωb.

2) Using the above parameters, fit frequency response data to

X1(s)

F (s)
=

K1(
1

ω2
2
s2 + 2ζ2

ω2
s + 1)

( 1
ω2

a
s2 + 2ζa

ωa
s + 1)( 1

ω2
b
s2 + 2ζb

ωb
s + 1)

(15)

This will give us estimates for K1, ζ2, ω2.

3) Using the relationships derived in part 8, find the values of ζ1 and ω1 consistent with the
rest of the parameters. Note that if the estimate of ζ1 is less than one fourth the estimate
determined by the log-decrement method (initial estimate), the value of ζ1 is set to one
fourth the initial estimate.

4) Estimate all of the parameters in A.

5) Look at the step response to estimate b2.


