ECE-320 Linear Control Systems Homework 4

Due: Tuesday September 28
1 For a system with plant

$$
G_{p}(s)=\frac{s+3}{s(s-1)}
$$

show that the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{10(s+3)}{s^{2}+12.7 s+30}
$$

when $q=100$.
What are e_{p} and e_{v} for this system? (Ans. $e_{p}=0, e_{v}=0.09$)
2 For a system with plant

$$
G_{p}(s)=\frac{s-1}{s(s-2)}
$$

show that the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{-10(s-1)}{s^{2}+11.1 s+10}
$$

when $q=100$.
What are e_{p} and e_{v} for this system? (Ans. $e_{p}=0, e_{v}=2.11$)

03 For a one degree of freedom system like we have in lab, with plant

$$
G_{p}(s)=\frac{15}{0.0025 s^{2}+0.0080 s+1}
$$

a) Show that when $q=0.1$ the quadratic optimal closed loop transfer function is

$$
G_{0}(s)=\frac{1856.6}{s^{2}+55.5 s+1939.1}
$$

and the position error is $e_{p}=0.043$.
b) Show that the controller is given by

$$
G_{c}(s)=\frac{0.0038 s^{2}+0.012 s+1.5}{0.012 s^{2}+0.67 s+1}
$$

c) Using the quadratic.m program, plot the step response of this system for $q=0.01, q=0.1$, and $q=1$. To use this program (which you'll be using in lab this week), you first need to enter the estimated plant transfer function in the form

$$
G_{p}(s)=\frac{K_{c l g} \omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

quadratic.m has the input arguments

- The amplitude of the step input (assume 1 cm , so enter 1)
- The plant transfer function $G_{p}(s)$
- The value of q.
- The length of time to plot the results (be sure the system has reached steady state, but not too long).
- The filename with data to compare the model to. In this case, type " (two single quotes). In lab you'll generate data for this part.

You should see that as q increases, which means the penalty on the difference between input and output is getting larger, the system should produce a smaller and smaller position error and response more and more quickly. If your final position error is not near 0 , you've probably made a scaling mistake.

4 For the systems on the following page:
a) Determine the system type.
b) If the system is type 0 assume $G_{p f}=1$ and determine the position error constant K_{p} and the position error e_{p}. Then determine the value of $G_{p f}$ that makes the position error zero.
c) If the system is type 1 , assume $G_{p f}=1$ and determine the position error, the velocity error constant K_{v}, and the velocity error e_{v}. Is there any constant value of $G_{p f}$ that can change the velocity error?

Ans. $e_{p}=\frac{3}{5}$ and $G_{p f}=5 / 2, e_{p}=3 / 13$ and $G_{p f}=13 / 10, e_{v}=3 / 5, e_{v}=4 / 5, G_{p f}$ has no effect on e_{v}.

