ECE 300

Signals and Systems

Homework 5

Due Date: Tuesday January 27. 2009 at the beginning of class

1. Show that any function $x(t)$ can be written in terms of and even function and an odd function, i.e. $x(t)=x_{e}(t)+x_{o}(t)$, where $x_{e}(t)$ is an even function, and $x_{o}(t)$ is an odd function. Determine expressions for $x_{e}(t)$ and $x_{o}(t)$ in terms of $x(t)$ (if you can do this than you have shown that $\left.x(t)=x_{e}(t)+x_{o}(t)\right)$.
2. Find the Fourier series representation for the signal indicated using hand analysis. Clearly indicate the values of ω_{0} and the c_{k}. Hints: (1) Draw the signal, and then use the sifting property to calculate the c_{k}. (2) If you understand how to do this, there is very little work involved.

$$
x(t)=\sum_{p=-\infty}^{\infty} \delta(t-3 p)
$$

3. Simplify each of the following into the form $c_{k}=\alpha(k) e^{-j \beta(k)} \operatorname{sinc}(\lambda k)$
a) $c_{k}=\frac{e^{j 7 k \pi}-e^{-j 2 k \pi}}{k \pi j}$
b) $c_{k}=\frac{e^{-j 2 \pi k}-e^{-j 5 \pi k}}{j k}$
c) $c_{k}=\frac{e^{j 5 k}-e^{j 2 k}}{k}$

Scrambled Answers $c_{k}=3 \pi e^{-j \frac{7 \pi k}{2}} \operatorname{sinc}\left(\frac{3 k}{2}\right), c_{k}=3 e^{j\left(\frac{7}{2} k+\frac{\pi}{2}\right)} \operatorname{sinc}\left(\frac{3 k}{2 \pi}\right), c_{k}=9 e^{j \frac{5}{2} k \pi} \operatorname{sinc}\left(k \frac{9}{2}\right)$
4. For the periodic signal shown below, with period $T=4$

a) Determine the fundamental frequency ω_{0}.
b) Determine the average value.
c) Determine the average power in the DC component of the signal.
d) Determine an expression for the expansion coefficients, c_{k}. You must write your expression in terms of the sinc function, and possibly a leading phase term.
5. (Matlab/Prelab Problem) Read the Appendix (at the end of this assignment) and then do the following:
a) Copy the file Trigonometric_Fourier_Series.m to file Complex_Fourier_Series.m.
b) Modify Complex_Fourier_Series.m so it computes the average value c_{o}
c) Modify Complex_Fourier_Series.m so it directly_computes c_{k} for $k=1$ to $k=N$. You are not to use the trigonometric Fourier series coefficients for this.
d) Modify Complex_Fourier_Series.m so it also computes the Fourier series estimate using the formula

$$
x(t) \approx c_{o}+\sum_{k=1}^{N} 2\left|c_{k}\right| \cos \left(k \omega_{o} t+\measuredangle c_{k}\right)
$$

You will probably need to use the Matlab functions abs and angle for this.
e) Using the code you wrote in part d, find the complex Fourier series representation for the following functions (defined over a single period)

$$
\begin{gathered}
f_{1}(t)=e^{-t} u(t) \quad 0 \leq t<3 \\
f_{2}(t)= \begin{cases}t & 0 \leq t<2 \\
3 & 2 \leq t<3 \\
0 & 3 \leq t<4\end{cases} \\
f_{3}(t)=\left\{\begin{array}{cc}
0 & -2 \leq t<-1 \\
1 & -1 \leq t<2 \\
3 & 2 \leq t<3 \\
0 & 3 \leq t<4
\end{array}\right.
\end{gathered}
$$

Turn in your code. Be sure to modify your program so any unnecessary code is eliminated (not just commented out). Note that the values of low and high will be different for each of these functions!

Appendix

In the majority of this course we will be using the complex (or exponential) form of the Fourier series, since it is really easier to do various mathematical things with it once you get used to it.

Exponential Fourier Series If $x(t)$ is a periodic function with fundamental period T, then we can represent $x(t)$ as a Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \omega_{0} t}
$$

where $\omega_{o}=\frac{2 \pi}{T}$ is the fundamental period, c_{0} is the average (or DC, i.e. zero frequency) value, and

$$
\begin{gathered}
\mathrm{c}_{\mathrm{o}}=\frac{1}{T} \int_{0}^{T} x(t) d t \\
c_{k}=\frac{1}{T} \int_{0}^{T} x(t) e^{-j k \omega_{0} t} d t
\end{gathered}
$$

If $x(t)$ is a real function, then we have the relationships $\left|c_{k}\right|=\left|c_{-k}\right|$ (the magnitude is even) and $\measuredangle c_{-k}=-\measuredangle c_{k}$ (the phase is odd). Using these relationships we can then write

$$
x(t)=c_{o}+\sum_{k=1}^{\infty} 2\left|c_{k}\right| \cos \left(k \omega_{o} t+\measuredangle c_{k}\right)
$$

This is usually a much easier form to deal with, since it lends itself easily to thinking of a phasor representation of $x(t)$. This will be particularly useful when we starting filtering periodic signals

