ECE 300
Signals and Systems

Homework 6

Due Date: Tuesday January 27, 2009 at the beginning of class

Exam 2, Thursday January 29, 2009

Problems:

1. Assume $x(t)$, which has a fundamental period of 2 seconds, has the following spectrum (all phases are multiples of 45 degrees)

a) What is $x(t)$? Your expression must be real.
b) What is the average value of $x(t)$?
c) What is the average power in $x(t)$?
2. Assume $x(t)$ has the spectrum shown below (the phase is shown in radians) and a fundamental frequency $\omega_{o}=2 \mathrm{rad} / \mathrm{sec}$:

Assume $x(t)$ is the input to a system with the transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
e^{-j \omega} & 1 \leq|\omega|<3 \\
2 e^{-j 2 \omega} & 3<|\omega|<5 \\
0 & \text { else }
\end{array}\right.
$$

Determine an expression for the steady state output $y(t)$. Be as specific as possible, simplifying all values and using actual numbers wherever possible.
3. A periodic signal $x(t)$ is the input to an LTI system with output $y(t)$. The signal $x(t)$ has period 2 seconds, and is given over one period as

$$
x(t)=e^{-t} \quad 0<t<2
$$

$x(t)$ has the Fourier series representation

$$
x(t)=\sum_{k} \frac{0.4323}{1+j k \pi} e^{j k \pi t}
$$

The system is an ideal highpass filter that eliminates all signals with frequency content less than 0.75 Hz .
a) Find the average power in $x(t)$.
b) Determine an expression for the output, $y(t)$. Your expression for $y(t)$ must be real.
(Answer: $y(t)=e^{-t}-0.4323-0.2622 \cos (\pi t-1.2626)$)
c) Determine the average power in $y(t)$.
d) What fraction of the average power in $x(t)$ is contained in the DC and fundamental frequency components?
4. Assume $x(t)=t^{2}-\pi \leq t \leq \pi$ with Fourier Series representation

$$
x(t)=\sum_{k} X_{k} e^{j k t}
$$

where

$$
X_{k}=\left\{\begin{array}{cc}
\frac{\pi^{2}}{3} & k=0 \\
\frac{2(-1)^{k}}{k^{2}} & k \neq 0
\end{array}\right.
$$

a) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies outside the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$? (Note: your answers must be real, no $e^{j a}$ terms.)
b) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies in the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$?
5. Assume two periodic signals have the Fourier series representations

$$
x(t)=\sum X_{k} e^{j k \omega_{0} t} \quad y(t)=\sum Y_{k} e^{j k \omega_{0} t}
$$

For the following system (input/output) relationships:
a) $y(t)=b x(t-a)$
b) $y(t)=b \dot{x}(t-a)$
c) $y(t)=b x(t) \cos \left(\omega_{o} t\right) \quad$ (Answer: $\left.Y_{n}=\frac{b}{2}\left(X_{n-1}+X_{n+1}\right)\right)$
d) $\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=K \omega_{n}^{2} x(t)$
i) write Y_{k} in terms of the X_{k}
ii) If possible, determine the system transfer function $H(j \omega)$
iii) A system must be both linear and time-invariant to have a transfer function. If you cannot determine the transfer function, indicate which system property is not satisfied (L or TI).
6. A periodic signal $x(t)$ with period T_{0} has the constant component $c_{0}=2$. The signal $x(t)$ is applied to an LTI system with transfer function

$$
H(j \omega)=\left\{\begin{array}{cc}
10 e^{-j 5 \omega} & |\omega|>\frac{\pi}{T_{0}} \\
0 & \text { otherwise }
\end{array}\right.
$$

The output of the system $y(t)$ can be written

$$
y(t)=a x(t-b)+c
$$

Determine the constants a, b, and c.

