ECE 300

Signals and Systems

Homework 3

Due Date: Thursday January 8, 2009 at the beginning of class

Problems

1. Determine the impulse responses for the following systems:
a) $y(t)=\frac{1}{2}[x(t-1)+x(t+1)]$
b) $y(t)=\int_{-\infty}^{t+1} e^{-(t-\lambda)} x(\lambda+3) d \lambda$
c) $\dot{y}(t)+2 y(t)=3 x(t-1)$
d) $y(t)=x(t)+\int_{-\infty}^{t} e^{-2(t-\lambda)} x(\lambda) d \lambda$
2. The continuous-time I - interval moving average (MA) filter is given by the input/output relationship

$$
y(t)=\frac{1}{I} \int_{t-I}^{t} x(\lambda) d \lambda
$$

a. Determine the impulse response of the system. Write your answers in terms of unit step functions.
b. Determine the step response of the system, that is, determine the output when the input is a unit step. (Answer: $\left.y(t)=\frac{1}{I}[t u(t)-(t-I) u(t-I)]\right)$
c. Determine the ramp response of the system, that is, determine the output when the input is a unit ramp.
d. Show that for a ramp input, in steady state $(t>I)$ the delay between the input and output is $\frac{I}{2} \quad$ Hint: Draw pictures of the integrand and look at what happens as the interval $[t, t-I]$ varies.
3. Consider the following two subsystems, connected together to form a single LTI system.

Determine the impulse response $h(t)$ of the entire system if the impulse responses of the subsystems are given as:
a) $h_{1}(t)=\delta(t) \quad h_{2}(t)=2 e^{-t} u(t)$
b) $h_{1}(t)=e^{-t} u(t) \quad h_{2}(t)=2 \delta(t-1)$
c) $h_{1}(t)=2 \delta(t-1) \quad h_{2}(t)=3 \delta(t-2)$
d) After completing these three parts, you should be able to recognize a property about convolution with impulse functions. Explain that relationship in a few sentences.
4. Consider a linear time invariant system with impulse response given by

$$
h(t)=e^{-(t+1)} u(t+1)
$$

The input to the system is given by

$$
x(t)=e^{-(t-1)} u(t-1)
$$

Use both graphical convolution and analytical convolution to determine the output $y(t)$ (i.e. find the answer two different ways). Specifically, for the graphical convolution you must
a) Flip and slide $h(t)$
b) Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
c) Determine the range of t for which each part of your solution is valid
d) Set up any necessary integrals and then compute $y(t)$
(Answer: $y(t)=t e^{-t} u(t)$)
5. Consider a causal linear time invariant system with impulse response given by

$$
h(t)=e^{-(t-1)} u(t-1)
$$

The input to the system is given by

$$
x(t)=u(t)-u(t-1)+u(t-3)
$$

Using graphical convolution, determine the output $y(t)$ for $2 \leq t \leq 5$. Note the limited range of t we are interested in!

Specifically, you must
a) Flip and slide $h(t)$
b) Show graphs displaying both $h(t-\lambda)$ and $x(\lambda)$ for each region of interest
c) Determine the range of t for which each part of your solution is valid
d) Set up any necessary integrals to compute $y(t)$
e) Evaluate the integrals

You should get (in unsimplified form)

$$
y(t)=\left\{\begin{array}{cc}
e^{-(t-1)}\left[e^{1}-1\right] & 2 \leq t \leq 4 \\
e^{-(t-1)}\left[e^{1}-1\right]+e^{-(t-1)}\left[e^{t-1}-e^{3}\right] & 4 \leq t \leq 5
\end{array}\right.
$$

6. Consider a causal linear time invariant system with impulse response given by

$$
h(t)=e^{-(t-1)} u(t-1)
$$

a) Show that the step response of the system (the response to a unit step) is

$$
y_{s}(t)=\left[1-e^{-(t-1)}\right] u(t-1)
$$

b) Using linearity and time-invariance, determine the response of the system to the input

$$
x(t)=u(t-1)-2 u(t-2)
$$

c) Use graphical convolution to determine the output of the system.
d) Show that your answers to \mathbf{b} and \mathbf{c} are the same.
e) Compute the derivative of the step response and show that you indeed obtain the impulse response.

7. Pre-Lab Exercises (to be done by all students. Turn this in with your homework and bring a copy of this with you to lab!)

a) Calculate the impulse response of the RC lowpass filter shown in Figure 1, in terms of unspecified components R and C . Determine the time constant for the circuit.

Figure 1. Simple RC lowpass filter circuit.
b) Show that the step response of the circuit (the response of the system when the input is a unit step) is $y_{s}(t)=\left(1-e^{-t / \tau}\right) u(t)$, and determine the $10-90 \%$ rise time. t_{r}, as shown below in Figure 2. The rise time is simply the amount of time necessary for the output to rise from 10% to 90% of its final value. Specifically, show that the rise time is given by $t_{r}=\tau \ln (9)$

Figure 2. Step response of the RC lowpass filter circuit of Figure 1, showing the definition of the $10-90 \%$ risetime.
c) Specify values R and C which will produce a time constant of approximately 1 msec . Be sure to consider the fact that the capacitor will be asked to charge and discharge quickly in these measurements.
d) Using linearity and time-invariance, show that the response of the circuit to a pulse of length T and amplitude A (, i.e. a pulse of amplitude A starting at 0 and ending at T) is given by

$$
y_{\text {pulse }}(t)=A\left(1-e^{-t / \tau}\right) u(t)-A\left(1-e^{-(t-T) / \tau}\right) u(t-T)
$$

e) Plot the response to a unit ($A=1$) pulse (in Matlab) for $\tau=0.001$ and $T=0.003$, 0.001 , and 0.0001 from 0 to 0.008 seconds. Note on the plots the times the capacitor is charging and discharging. Use the subplot command to make three separate plots, one on top of another (i.e., use subplot($3,1,1$), subplot($3,1,2$), subplot(3,1,3)).
f) Assume the input is a pulse of amplitude A and width T, and use the results from part \mathbf{d} to determine an expression for the amplitude of the output at the end of the pulse, $y_{\text {pulse }}(T)$. Next, assume that $\frac{T}{\tau} \ll 1$ (the duration for the pulse is much small than the time constant of the circuit) and use Taylor series approximations for the exponentials to show that $y_{\text {pulse }}(T) \approx \frac{A T}{\tau}$. This means the amplitude of the output at time T (the end of the pulse) is approximately the area of the pulse divided by the time constant.

