ECE 300 Signals and Systems Homework 1

Due Date: Tuesday December 9, 2008 at the beginning of class

<u>Reading:</u> Roberts Chapter 2 and your course notes.

Problems

1) Sketch the following functions:

a)
$$x(t) = u(t+1) - 2u(t-1) + 3u(t-4) - 2u(t-5)$$

b) $x(t) = \operatorname{rect}\left(\frac{t-2}{4}\right) - \Lambda\left(\frac{t-2}{2}\right)$

- 2) Problem 2.40 in Roberts text. Use a combination of singularity and cosine functions.
- 3) Problem 2.42 in Roberts text

4) Assume
$$x(t) = rect\left(\frac{t+1}{3}\right) + rect(t)$$
 and sketch the following:
a) $x_1(t) = x(2t)$ b) $x_2(t) = x(\frac{t}{2})$
c) $x_3(t) = x(1-t)$ d) $x_4(t) = x(1+2t)$

5) Simplify the following as much as possible, giving numerical answers where possible. Use unit step functions as necessary to simplify your answers.

a)
$$\int_{-\infty}^{\infty} e^{-t}u(t-5)dt$$
b)
$$\int_{-\infty}^{\infty} t^{2} \left[u(t-6)-u(t-5)\right]dt$$
c)
$$\int_{-\infty}^{\infty} t^{2} \delta(t-2)dt$$
d)
$$\int_{5}^{\infty} t^{2} \delta(t-2)dt$$
e)
$$\int_{-\infty}^{\infty} \delta(t-3)\delta(t-4)dt$$
f)
$$\int_{-\infty}^{\infty} u(t-3)\delta(t-4)dt$$
g)
$$\int_{-\infty}^{t} e^{-(t-\lambda-1)}\delta(\lambda-2)d\lambda$$
h)
$$\int_{-\infty}^{t} e^{-2(t-\lambda)}\delta(\lambda+1)d\lambda$$
i)
$$\int_{-\infty}^{t-1} e^{-3(t-\lambda)}\delta(\lambda-1)d\lambda$$
j)
$$\int_{-t}^{\infty} e^{-(t-\lambda)}\delta(\lambda+2)d\lambda$$
k)
$$\delta(t)\delta(t-2)$$
l)
$$\delta(2(t-2))\sin(ty\pi)$$
m)
$$t\delta(t-1)+t^{3}\delta(t-3)$$
n)
$$H(\omega)\delta(\omega-1)+A(\omega-x+1)\delta(\omega)$$

Winter 08-09

6) For each of the following signals, determine if the signal is periodic and, if so, the fundamental period.

a) $x(t) = \sin(2t) + \cos(3t + 30^{\circ})$ b) $x(t) = \cos(2t) + \cos(\pi t)$ c) $x(t) = e^{-t}\cos(t)$ d) $x(t) = 2e^{j2t} + 3e^{j(3t+2)}$ e) $x(t) = 5t - e^{-j(t+3)}$ f) $x(t) = \sin(2t) + e^{j(0.5t+1)}$

7) Use Euler's identity in the form $e^{j\omega_0 t} = \cos(\omega_0 t) + j\sin(\omega_0 t)$ to answer the following questions.

a) If $\omega_0 = \frac{\pi}{4}$ r/s, sketch the vector of $e^{j\omega_0 t}$ in the complex plane for t = 1, 3, 5, and 7 seconds. Indicate on your plot the time value associated with each vector. Describe what is happening to the vector as time increases.

b) If $\omega_0 = \frac{\pi}{4}$ r/s, sketch the vector of $e^{-j\omega_0 t}$ in the complex plane for t = 1, 3, 5, and 7 seconds. Indicate on your plot the time value associated with each vector. Describe what is happening to the vector as time increases.

c) What property does the result have when you add the vectors $e^{j\omega_0 t} + e^{-j\omega_0 t}$

d) What property does the result have when you subtract the vectors $e^{j\omega_0 t} - e^{-j\omega_0 t}$

Matlab Problems

8) Using Matlab, plot each signal from Problem 6 for three *fundamental periods* if the signal is periodic, or three times the longest period in the signal if the signal is not periodic. Be sure there are at least 50 samples per period for each waveform and your graphs are neatly labeled. <u>Notes:</u> (1) Matlab works in radians, so all angles must be converted to radians, (2) use **exp** in Matlab to get an exponential, (3) **j** is Matlab's way of indicating the square root of -1, and if you want $x(t) = e^{j^{2t}}$ you should type something like $x = exp(j^*2^*t)$, and (4) if the waveform is complex, plot the real and imaginary parts separately. The Matlab commands **real** and **imag** are very useful for this. Turn in your plots.

9) Save the files **unit_step.m**, **unit_rect.m**, and **unit_triangle.m** from the course website to the directory in which you will be using MATLAB. This directory is called the "working directory" in Matlab. If you do this correctly, you can use theses functions just as you would any other built-in matlab function. To use these supplied Matlab functions to generate the function

$$x(t) = 3u(t-2) + 4\operatorname{rect}\left(\frac{t-4}{5}\right) - 3\Lambda\left(\frac{t+1}{4}\right)$$

from t = -10 to 10, you might type the following in Matlab

t = linspace(-10, 10, 1000);x = 3*unit_step(t-2)+4*unit_rect((t-4),5)-3*unit_triangle((t+1),4);

Use these functions to plot the functions from problem 1. Plot all of the functions from t = -2 to 6 on one page using the **subplot** command. Winter 08-09