Short Answer Review

1) Assume we are going to synthesize a periodic signal $x(t)$ using $x(t)=\sum c_{k} e^{j k \omega_{0} t}$ where $c_{k}=\frac{j}{1+k^{2}}$. Will $x(t)$ be a real function? \quad a) Yes \quad b) No
2) Assume we are going to synthesize a periodic signal $x(t)$ using $x(t)=\sum c_{k} e^{j k \omega_{0} t}$ where $\quad c_{k}=\frac{j k}{1+j k}$. Will $x(t)$ be a real function? a) Yes b) No
3) Assume $x(t)$ is a periodic function with period $T=2$ seconds. $x(t)$ is defined over one period as $x(t)=t, \quad-1<t<1$. The average power in $x(t)$ (the power averaged over one period) is
a) 0
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) $\frac{2}{3}$

Problems 4 and 5 refer to the following Fourier series representation of a periodic signal

$$
x(t)=2+\sum_{k=-\infty}^{k=\infty} \frac{2}{2+j k} e^{\frac{j k t}{2}}
$$

4) The average value of $x(t)$ is
a) 0
b) 1
c) 2
d) 3
5) The fundamental frequency (in Hz) is
a) $\frac{1}{2 \pi}$
b) 0.5
c) $\frac{1}{4 \pi}$
d) 2
6) Assume $x(t)$ is a periodic function with Fourier series representation $x(t)=\sum c_{k}^{x} e^{j k \omega_{0} t} . x(t)$ is the input to an LTI system with output $y(t)=3 \dot{x}(t-2)$. The Fourier series coefficients c_{k}^{y} are related to the c_{k}^{x} in which of the following ways
a) $c_{k}^{y}=3 j k \omega_{0} e^{+j k \omega_{0} 2} c_{k}^{x}$
b) $c_{k}^{y}=-3 j k \omega_{0} e^{-j k \omega_{o} 2} c_{k}^{x}$
c) $c_{k}^{y}=3 j k \omega_{0} e^{-j k \omega_{0} 2} c_{k}^{x}$
d) $c_{k}^{y}=-3 j k \omega_{0} e^{+j k \omega_{0} 2} c_{k}^{x}$

Problems 7-10 refer to the following spectrum plot for a signal $x(t)$ with fundamental frequency $\omega_{o}=2$. All angles are multiples of 90 degrees.

7) What is the average value of $x(t)$?
a) 13
b) $\frac{13}{7}$
c) $\frac{13}{5}$
d) 3
e) -3
8) What is the average power in $x(t)$?
a) 13
b) $\frac{13}{7}$
c) 35
d) 3
9) If $x(t)$ is the input to a system with transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
2 & 1<|\omega|<3 \\
0 & \text { else }
\end{array}\right.
$$

the output $y(t)$ in steady state will be
a) $12 \cos (2 t)$
b) $4 \cos \left(2 t+90^{\circ}\right)$
c) $8 \cos \left(t+90^{\circ}\right)$
d) $8 \cos \left(2 t+90^{\circ}\right)$
e) $6 \cos (2 t)$
10) The average power in $y(t)$ is
a) 4
b) 8
c) 16
d) 32

Problems 11-13 refer to the following plot (all angles are multiples of 45 degrees)

11) Is this a valid spectrum plot for a real valued function $x(t)$?
a) Yes
b) No
12) Assuming the magnitude portion of the spectrum is correct, what is the average power in $x(t)$?
a) 4
b) 7
c) 11
d) 12
13) Assuming the plot is a valid spectrum plot for a real valued function $x(t)$, the average value of $x(t)$ is
a) 1
b) 2
c) $\frac{7}{4}$
d) -1

Problems 14-18 refer to the following Fourier series representation of a periodic signal

$$
x(t)=2+\sum_{k=-\infty}^{k=\infty} \frac{2}{2+j k} e^{\frac{j k t}{2}}
$$

14) The average value of $x(t)$ is
a) 1
b) 2
c) 3
d) 4
15) The average power in the DC component of $x(t)$ is
a) 1
b) 2
c) 4
d) 8
e) $9 \quad$ f) 18
16) If $x(t)$ is the input to a system with transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
2 & |\omega|<0.4 \\
0 & \text { else }
\end{array}\right.
$$

the output $y(t)$ in steady state will be
a) 0
b) 3 c) 6
d) $1.79 \cos \left(0.5 t-26.6^{\circ}\right)$
e) $6+3.58 \cos \left(0.5 t-26.6^{\circ}\right)$
17) If $x(t)$ is the input to a system with transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
2 & |\omega|>0.4 \\
0 & \text { else }
\end{array}\right.
$$

the output $y(t)$ in steady state will be
a) $2 x(t)$
b) $2 x(t)-3$
c) $2 x(t)-6$
d) none of these
18) If $x(t)$ is the input to a system with transfer function

$$
H(\omega)=\left\{\begin{array}{cc}
0 & 0.4<|\omega|<0.6 \\
2 & \text { else }
\end{array}\right.
$$

the output $y(t)$ in steady state will be
a) $1.79 \cos \left(0.5 t-26.6^{\circ}\right)$
b) $3.58 \cos \left(0.5 t-26.6^{\circ}\right)$
c) $2 x(t)-1.79 \cos \left(0.5 t-26.6^{\circ}\right)$
d) $2 x(t)-3.58 \cos \left(0.5 t-26.6^{\circ}\right)$

For problems 19-21, assume $x(t)=1+3 \sin \left(2 t+45^{\circ}\right)$
19) The average value of $x(t)$ is
a) 0
b) 1
c) 2
d) 4
20) The average power in $x(t)$ is
a) 1
b) $\frac{13}{4}$
c) 5.5
d) 19
21) Assuming $\omega_{0}=2, c_{1}$ is equal to
a) 3
b) $\frac{-3 j}{2}$
c) $\frac{3 e^{j \frac{\pi}{4}}}{2}$
d) $\frac{3 e^{-j \frac{\pi}{4}}}{2}$

Problems 22 and 23 refer to the periodic function $x(t)$ defined over one period $T_{0}=3$ as $x(t)=t \quad 0 \leq t<3$ which has the Fourier series representation

$$
x(t)=\frac{3}{2}+\sum_{k \neq 0} \frac{3 j}{k 2 \pi} e^{j k \frac{2 \pi}{3} t}
$$

22) The average power in $x(t)$ is
a) 0
b) $\frac{3}{2}$
c) $\frac{9}{4}$
d) 3
e) $\frac{9}{2}$
23) If this signal is the input to a transfer function $H(j \omega)=0.5 e^{-j 0.25 \omega}$, the steady state output will be
a) $0.5(t-0.25)$
b) $0.5 t e^{-j 0.25 \omega}$
c) $0.5(t+0.25)$
d) none of these

Problems 24 and 25 refer to the following transfer functions

$$
\begin{array}{cc}
h_{1}(t)=e^{-t} u(t+1) & h_{2}(t)=\cos (t) u(t) \\
h_{3}(t)=\Pi\left(\frac{t}{2}\right) & h_{4}=u(t)
\end{array}
$$

24) Which of these systems are causal?
25) Which of these systems are BIBO stable?
26) Is the system $y(t)=\sin \left(\frac{1}{x(t)-1}\right)$ BIBO stable? a) yes b) no
27) Is the system $y(t)=\frac{1}{e^{x(t)-1}}$ BIBO stable? \quad a) yes \quad b) no
28) Assume V_{1} and V_{2} are voltages, and that $P_{V 1}$ and $P_{V 2}$ are the power absorbed by a 1Ω resistor when the corresponding voltage is applied to it. We know that the ratio of the two powers, $\frac{P_{V_{1}}}{P_{V_{2}}}$, can be expressed in dB as -40 dB . This is equivalent to
a) $\frac{V_{1}}{V_{2}}=0.01$.
b) $\frac{V_{1}}{V_{2}}=0.0001$
c) $\frac{V_{1}}{V_{2}}=0.1$
d) none of these
29) Assume V_{1} is the voltage across a 1Ω resister, and we measure $P_{V_{1}}=10 \mathrm{dBm}$. This means V_{1} is equal to
a) 0.01
b) 0.1
c) 1
d) 10
30) Assume we measure the average power in the fundamental frequency of a periodic signal as 40 dBmV . This means $\left|c_{1}\right|$ is equal to
a) $\frac{1}{\sqrt{2}} 10^{-1}$
b) 10^{-1}
c) 5 d) none of these

Answers:

1) b 2) а 3) с 4) d 5) с 6) с 7) е 8) с 9) d 10) d
2) b 12) c 13) d
3) с 15) е 16) с 17) с 18) d
4) b 20) с 21) d 22) d 23) а 24) h_{2} and h_{4} 25) h_{1} and h_{3}
5) a 27) a 28) a 29) b 30) a
