
   

Working with dBs 
 
When EEs monitor a signal passing through a system, most often they are 
concerned with its power level as it propagates through the various components 
and subsystems.  Normally, tracking the power level involves multiplication or 
division of gains and losses representing the action of the various components of 
the system on the signal.   Many times, the signal power can vary over a wide 
range of values - several orders of magnitude - which makes representing the 
signal power at different points a bit inconvenient.  The mathematical 
computations involving multiplication and division of large numbers can be 
cumbersome. 
 
In order to make the math easier, we often use a logarithmic scale to represent 
values.  There are two chief advantages in working with logarithmic scales: 

1. Multiplication becomes addition:  log(a x b) = log(a) + log(b) and log(a / b) 
= log(a) - log(b) ). 

2. Scales are compressed - if we have values ranging over several orders of 
magnitude, the plot scale is large for linear representations, while 
relatively compressed for logarithmic representation of values. 

 

Definition of deciBel (dB) 
The logarithmic scale most often used is one in which the values are represented 
in deciBels (dBs), often written as decibels.  Here, the decibel is defined as a 
logarithmic representation of a unit-less quantity, normally a ratio of two powers.  
The logarithmic base (or radix) used for dBs is 10: 
 

( )1010 log=dBN N  
 
where N refers to the numerical value being represented and NdB refers to the 
value in decibels (dBs).   Note that other definitions of “dBs” exist, but this is the 
definition used for representing electrical signal powers, and therefore it is the 
only valid definition as far as we are concerned. 
 
There are a number of things to note about this definition.  First, there is a 
multiplier of 10 in front of the logarithm.  That is simply part of the definition which 
makes the numbers work out more intuitively.  However, it is important to 
remember that the multiplier is 10 only for quantities involving power.  Next, the 
logarithm is base 10 only.  Other radixes may be used to represent values, but 
not for dBs. Finally, note that the argument of the logarithm is a unit-less value.  
This last point is very important in our discussion here. 
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Representing Values as dBs 
There are a number of values for which it will be good to know the dB 
representation in order to make life easier and to understand the “lingo”.  Simply 
plug the values in the dB expression to create this table (verify a few in your 
head): 
  

 
lin dB

1.00E-06 -60
0.001 -30
0.01 -20
0.1 -10
0.5 -3

1 0
2 3

10 10
100 20

1000 30
1.00E+06 60

values
 
 
Note that number values less than 1 
produce negative dB values, and 
number values greater than 1 
produce positive dB values.  The dB 
value of 1 is zero dB, and the dB 
value of 0 is undefined (but can be 
approximated by -99 dB!). 
 

 
To convert dB values back to linear values, simply invert the definition of decibels 
as follows: 
 

1010
dBN

N =  
 
Be sure to verify a few of the table entries using this relationship as well.  You 
must feel very comfortable with the relationship between numerical values and 
dB representations before moving on. 
 
One of the advantages mentioned above was that multiplication was easier using 
logarithms.  Let’s try it using the table above.  The value 2 converts to 3 dB, and 
100 converts to 20 dB.  What should the value 200 convert to?  Using 
multiplication, we see that 200 = 2 x 100.  So, when converting to dBs, we find: 
 

( ) ( )
( ) ( )

10 10

10 10

200 10log 200 10log 100 2

10log 100 10log 2 20 3 23 dB

→ = ×

= + = + =
 

 
Below are some more examples of using this multiplicative effect to quickly find 
dB values: 
 

( ) ( )
( ) ( )

( ) ( )

10 10

10 10

6
10 10

50 10log 10 10log 5 10 7 17 dB
1 10log 10 10log 5 10 7 17 dB50
4.0E06 10log 10 10log 4 60 6 66 dB

→ + = + =

→ − − = − − = −

→ + = + =
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Representing Powers using dBs 
There are two ways we typically use dBs: to represent powers (normally average 
powers), and to represent power ratios.  We must be fluent in both, and how to 
combine the two.  Lets look first at how we use deciBels to represent power 
values (or express powers in terms of corresponding voltages or currents).  Here, 
we need to recall one important point from the definition of dBs - the value we 
represent is to be a unit-less quantity, a power ratio.  To create this unit-less 
ratio, we express the power relative to some standard or reference power.  For 
example, suppose we wish to represent 5 W in terms of deciBels.  First, consider 
the use of a power reference of 1W: 
 

dBWdBWW
WP 799.6)5(log101
5log10 1010 ≅==





=  

 
Here, the appended “W” to the dB unit reminds us that this is a decibel 
representation of a power relative to 1 W.  A more common measure is dBm, or 
power relative to 1 mW (note that the “W” is missing in this unit): 
 

( ) dBmmW
WP 375000log101
5log10 1010 ==





=  

 
and we can relate the power in dBW to power in dBm rather simply: 
 

( )

30)1000(log10)5(log10

10005log10
1

1000
1
5log10)

1
1000

1
5(log10

1010

101010

+=+=

⋅=







==

dBWP
mW
mW

W
W

W
mW

mW
WdBmP

 

 
So 5 W may be represented by 7 dBW or 37 dBm, values separated by 30 dB or 
a factor of 1000.  Do not think of dBW and dBm as different units.  They both are 
dBs - the “W” and “m” suffixes are there to remind us of the power reference. 
 
A couple of examples would be nice: 
 

( ) ( )

( ) ( )

( ) ( )

10 10

10 10

10 10

1W1W 10log dBW 10log 1 dBW 0 dBW1W
1W1W 10log dBW 10log 1000 dBm 30 dBm1mW
20mW20mW 10log dBW 10log 20 dBm 13 dBm1mW

→ = =

→ = =

→ = =

 

 

 3  



   

Another dB unit used to represent a power level is the dBV or dBmV, which is a 
power level referenced back to an equivalent rms voltage level which would 
produce that power given a 1 Ω resistance.  Suppose we know a signals rms 
voltage.  Given the resistance over which the voltage is developed, the power 

would be equal to 
2

rmsv
R .  It turns out that many times we ignore the resistance 

value in the calculation, calculating the power developed across a 1 Ω 
resistance.  Thus P = vrms

2. We can represent this signal using dB units and a 
reference of W as follows: 
 

2

1010log 1
rms

dBW
V WP dW
 =  
 

BW . 

Now, we could reason that the 1 W reference is just (1 Vrms)2, and rewrite 
 

( )
2

2_ 10 1010 log 20log 11
rms rms

dB X
rmsrms

v vP dBW VV
   = =       

dBV . 

 
Here, we have used the fact that log(x2) = 2 log(x). The new unit, dBV, is still a 
dB measure of power, but the suffix “V” reminds us that we have referred the 
power back to an equivalent rms voltage.  A similar power level unit is dBmV, 
defined as 
 

1020 log 1
rms

dBmV
rms

vP dmV
 =  
 

BmV . 

 
It is important to remember that dBW, dBm, dBV, and dBmV are all dB units of 
power.  Each has a different calculation method and reference. 
 
Here are some examples of how the powers corresponding to rms voltage 
amplitudes can be expressed in dBV and dBmV units: 
 

( )

( )

( )

rms
rms 10 10

rms

rms
rms 10 10

rms

3
3rms

rms 10 10
rms

5V5V 20log dBV 20log 5 dBV 14dBV1V

0.1V0.1V 20log dBmV 20log 100 dBmV 20 dBmV1mV

0.4x10 mV0.4 V 20log 20log 0.4x10 dBmV 68 dBmV1mV
−

−

 → = = 
 
 → = = 
 
 µ → = = − 
 

 

Representing Power Ratios using dBs 
When we wish to represent a power ratio, we simply determine the dB value of 
that ratio.  For example, lets look at power gain (or loss) for a circuit: 
 

( )Pin
PoutGp 10log10=  

 4  



   

 
The symbol G is commonly used to represent gain, and here we use the 
subscript “p” to indicate that we are calculating the power gain, defined as the 
ration of output power to input power.  The power gain of a circuit (or system), a 
unit-less quantity, is often expressed in dBs.  An important convention is that dBs 
are normally reserved for ratios of powers, although there are ways to represent 
voltage and current ratios. 
 
Now, how is this related to voltage gain, which is what we spend much of our 
time calculating in circuits classes?  Actually, decibels are defined for power, so 
we need to modify the calculation slightly to deal with voltages (assuming proper 
load matching): 
 

( ) ( )

( )

2

2
2 210 10 10

10

10 log 10log 10log

20log

p

Vout
Pout VoutRG dPin Vin Vin

R
Vout dBVin

 
 

= = = 
 
 

=

B
 

 
where the fact that log(x2)=2log(x) has been used.  
 
As an example, suppose we measure the voltage at the input to a subsystem as 
15 V across 50 ohms.  The output voltage, again across a 50 ohm load, is 12 V.  
Calculate the power gain in dBs. 
 
The power at the input is V2/R=4.5 W, and the power at the output is 2.88 W.  
This gives a power gain of Gp=2.88/4.5=0.64 -> -1.94 dB.  This is actually a 
power loss (negative power gain – tricky!).  Let’s try it with voltage:  Gp = 
20log10(Vout/Vin)= -1.94 dB.  Why doesn’t the resistance make a difference? 
 
Returning to the power gain computation above, we can see how using 
logarithms to convert multiplication to addition happens: 
 

( )
)()(

)(log10)(log10log10 101010

dBmPindBmPout
P
Pin

P
Pout

Pin
PoutG

refref
p

−=

−==
 

 
and multiplication is transformed to addition.  
 

Signal Propagation 
Suppose that we wish to determine how much signal power should arrive at a 
certain location, given the gains and losses along its path.  This is where the use 
of dBs really shows its advantages.  To be continued… 
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Rounding Decibel Values 
When we first start working with decibels, we are tempted to try to “round off” 
values as we would with linear values.  However, the use of the logarithmic scale 
distorts the error of that technique.  The appropriate number of digits to use to 
express powers and gains normally varies a bit with application, but a few 
examples will serve to demonstrate the effect. 
 
Suppose we have a power gain Gp of 3.50 dB.  In linear terms, this is  
 

, 3.5
10 10

, 10 10 2.238721 2.24
p dBG

p linG = = = ≅  
 
What happens if I represent Gp as 3 dB, or 4 dB?  The value 3 dB is equivalent to 
1.995262, but that is so close to two that we normally say 3 dB is a factor of 2 (or 
-3 dB is a factor of 1/2).  If we choose to write the gain as 3 dB, the error is about 
11%, which is usually not acceptable.  If we choose to write the gain as 4 dB, 
which is equivalent to 2.51, the error is over 12%.  So we know that we should at 
least carry the first digit to the right of the decimal to accurately represent a dB 
value. 
 
What about the second digit?  Let’s look at the gain value 3.55 dB (2.265), and 
compare the errors in writing 3.5 and 3.6 dB.  The error writing the gain as 3.5 dB 
(2.239) is a little over 1%, and the error writing the gain as 3.6 dB (2.291) is 
about 1.2%.  So, carrying the second digit to the right of the decimal can give 
accuracies on the order of 1%.   Normally, dB values are not written with more 
than 2 values to the right of the decimal in practice. 
 
So, we need at least one digit to the right of the decimal to accurately represent 
dB values, and 2 digits can give more precision.  However, when measuring 
values in dBs, we often find the accuracy of the measurement equipment is on 
the order of many tenths of a dB, often 0.5 or 1 dB.  So, using the second digit 
may be a bit silly if we wish to compare our values to measurement.  However, 
certain applications such as communication systems often carry the precision of 
dB estimates to two digits past the decimal, since in that case performance can 
vary greatly with a power difference of 0.1 dB.  Most classroom applications are 
fine using one digit to the right of the decimal.   
 
NOTE:  Percent error is not appropriate for dB measurements – use dB 
difference instead! 
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