ECE-300, Quiz #4

1) We can write $e^{jk\pi}$ as a) 1 b) $(-1)^k$ c) 0

2) We can write j as a $e^{j\pi}$ b) $e^{-j\pi}$ c) $e^{j\frac{\pi}{2}}$ d) $e^{-j\frac{\pi}{2}}$

3) We can write -1 as (circle all that apply) a) $e^{j\pi}$ b) $e^{-j\pi}$ c) $e^{j\frac{\pi}{2}}$ d) $e^{-j\frac{\pi}{2}}$

4) We can write $cos(\theta)$ as

a)
$$\frac{e^{j\theta} - e^{-j\theta}}{2}$$
 b) $\frac{e^{j\theta} - e^{-j\theta}}{2j}$ c) $\frac{e^{j\theta} + e^{-j\theta}}{2j}$ d) $\frac{e^{j\theta} + e^{-j\theta}}{2}$

5) We can write $sin(\theta)$ as

a)
$$\frac{e^{j\theta}-e^{-j\theta}}{2}$$
 b) $\frac{e^{j\theta}-e^{-j\theta}}{2j}$ c) $\frac{e^{j\theta}+e^{-j\theta}}{2j}$ d) $\frac{e^{j\theta}+e^{-j\theta}}{2}$

- 6) Assume we are going to synthesize a periodic signal x(t) using $x(t) = \sum c_k e^{jk\omega_0 t}$ where $c_k = \frac{J}{1 \perp L^2}$. Will x(t) be a real function?
- a) Yes b) No
- 7) Assume we are going to synthesize a periodic signal x(t) using $x(t) = \sum c_k e^{jk\omega_0 t}$ where $c_k = \frac{jk}{1+ik}$. Will x(t) be a real function?
- a) Yes b) No
- 8) Assume $x(t) = 2\cos(3t)$ is the input to system with transfer function $H(j\omega) = 2e^{-j\omega}$. In steady state the output of the system will be
- a) $y(t) = 4\cos(3t)e^{-j\omega}$ b) $y(t) = 4\cos(3t)e^{-j3}$ c) $y(t) = 4\cos(3t-3)$
- d) $y(t) = 4\cos(3t+3)$ e) none of these

9) Assume $x(t) = 2\cos(t) + 5\sin(2t) + 6\sin(3t)$ is the input to a system with transfer function $H(j\omega) = 3\text{rect}\left(\frac{\omega}{5}\right)$. In steady state the output of the system will be

a)
$$y(t) = \left[2\cos(t) + 5\sin(2t) + 6\sin(3t)\right] \left[3\operatorname{rect}\left(\frac{\omega}{5}\right)\right]$$

b)
$$y(t) = 6\cos(t) + 15\sin(2t) + 18\sin(3t)$$

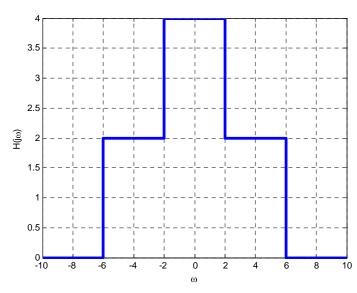
c)
$$y(t) = 6\cos(t) + 15\sin(2t)$$

d) none of these

10) Assume $x(t) = 2\cos(3t) + 4\cos(5t)$ is the input to a system with transfer function given by

$$H(j\omega) = \begin{cases} 2 & 4 < |\omega| < 6 \\ 0 & else \end{cases}$$

The output of the system in steady state will be


a)
$$y(t) = 4\cos(3t) + 8\cos(5t)$$

b)
$$y(t) = 8\cos(5t)$$

c)
$$y(t) = 4\cos(3t)$$

d) none of these

11) Assume $x(t) = \cos(t) + \cos(5t) + \cos(9t)$ is the input to a system with transfer function given below:

The output of this system in steady state will be

a)
$$y(t) = 4\cos(t) + 4\cos(5t)$$
 b) $y(t) = 4\cos(t) + 2\cos(5t) + \cos(9t)$

c)
$$y(t) = 4\cos(t) + 2\cos(5t)$$
 d) none of these