
ECE 300
Signals and Systems

Homework 3

Due Date: Thursday March 26, 2009 at the beginning of class

Reading Roberts pages 54-58, 115-140

Problems

1) Consider the following mathematical models of systems:

a) b)(1)() ()ty t e x t− += ()() ()
t

ty t e x dλ λ λ− −

−∞

= ∫ c) ()

0

() ()
t

ty t e x dλ λ λ− −= ∫

d) () 1
2
ty t x ⎛= −⎜

⎝ ⎠
⎞
⎟ e)

/2

)() (
t

y t x dλ λ
∞−

= ∫ f) () 3 () 2 ()
dy t

y t x t
dt

= +

g) () 2 () 2 ()dy t ty t x t
dt

= − + h) () () (1)
t

y t t x dλ λ λ
−∞

= − +∫

Fill in the following table (Y or N for each question) for each system. You
must justify your answers to receive credit. Assume can be any possible
value.

t

Part Causal? Memoryless? Linear? Time Invariant?

a
b
c
d
e
f
g
h

For part f you should show 0

0

3() 3()
0() () 2 ()

t
t t t

t

y t y t e e x dλ λ λ− −= + ∫ in order to

determine the system is or is not causal and has memory or is memoryless.

For part g you should solve the DE first (see handout about integrating factors)
and then determine whether the system is or is not causal and has memory or is
memoryless.

Remember that we always assume the initial conditions are zero and the initial
time is −∞ when determining time-invariance and linearity.

Spring 2009

2) (Matlab Problem) The average value of a function x(t) is defined as

1 ()
b

a
x x t d

b a
= t∫

−

and the root-mean-square (rms) value of a function is defined as

21 ()
b

rms a
x x t dt

b a
=

− ∫

Read the Appendix (located at the end of this homework), then

a) use Matlab to find the average and rms values of the function 2()x t t= for

 1 1t− < <

b) use Matlab to find the average and rms values of the following functions

() cos() 0
() cos() 0 2

() | | 1 1
() cos() 2 4

x t t t
x t t t

x t t t
x t t t t

π
π

= < <
= < <
= − < <

= − < <

Hint: You will probably find the sqrt function useful. You should write a Matlab m-
file for this problem, and turn it in with your homework, as well as the answers.

3) Matlab/Pre-Lab: Experimentation with Sound, Small Signal Models

The MATLAB program linear_systems_and_sounds.m allows you to specify an
input signal (lines 11-12) and system (line 24), and listen to how the sound
changes as the signal passes through the system. We will use the sounds
produced to try to identify the systems as linear or nonlinear. Recall from class
that a system is linear if and only if an input signal at frequency f produces an
output signal at frequency f . The phase angle and amplitude between the input
and output may change, but the frequency cannot. Just think about how transfer
functions affected periodic signals when you were using phasors to represent
sinusoids- the transfer function could change the magnitude and phase but not
the frequency of the input signal. Note that we can only hear sounds when the
speaker is vibrating.

a) Using the code as is (i.e. with y=x), investigate how the frequency of the
sinusoidal input signal affects the sound of the signal. Specifically, describe the

Spring 2009

sound you hear for input signal frequencies f0 of 200, 1000, and 5000 Hz.. Note
that you need to run the program, wait for the input sound (and graph) to appear,
then hit enter and you will hear the output sound and see the output plotted in the
lower panel.

b) Now change the system so the output is zero, i.e., y = 0*x (this will make sure
the y vector is the correct length). What do you hear for the system output, if
anything?

c) Now change the system so the output is y=0*x+10; What do you hear? How
fast (at what frequency) is the speaker vibrating?

d) For each of the mathematical models of systems in the following table,
assume x is a periodic signal with frequency 200 Hz. For each of these models,
determine if the mathematical model of the system is linear or not, and if you
would classify the system models as linear or not based on both listening to and
looking at the input and output. Discrete-time solutions for model (j) is included in
the code, and is commented out. Uncomment the correct lines when you need to
run these models.

e) For many system, such as transistors, we are really interested in small signal
models. For these systems we only care about the behavior of the system about
a set or bias point for an input with a small amplitude. For ()x t small, we can use a
Taylor series approximation of around x(t) = 0 of the form ()y x

0() ()y x y x tν≈ +

where and 0y ν are determined by the Taylor series expansion of about the
point . If we subtract the bias point () from both sides of the equation and
rename variables we have

()y x
0x = 0y

0() () ()y x y y x x tν− ≡ Δ =

This is now a description of a linear system between input ()x t

()
and output .

This relationship is only approximately linear if the input
()y xΔ

x t is sufficiently small
that the Taylor series approximation is valid.

For the systems that are mathematically nonlinear, but appeared/sounded linear,
determine the small signal linear approximation, that is, determine and 0y ν .

Note that our input amplitude is 1, and hence something like /10z x= would be
considered small. The following formula’s for Taylor series about the point 0z =
may be helpful:

Spring 2009

Taylor series (general form)
0

() (0)
z

dff z f z
dz =

≈ +

 [] 1() c c cy z a bz a ca bz−= + ≈ + () sin()y z az az= ≈

() log() log() y z a bz a= + = + bz
a b+

() 1azy z e az= ≈ +

(Note that log here means natural log, typing log in Matlab takes the natural log
of the function.)

As a check, for those systems where the small signal model is valid for this
particular input signal , if you look at the plots from linear_systems_and
_sounds.m, the output signal should be centered at oy and should oscillate
between oy ν+ and oy ν− (or reasonably close to this) with the same frequency
as the input signal.

Don’t forget that if you want to process element by element, you may need to use
.*, ./, or .^ in Matlab

Fill-in and turn in the Table on the following page. You do not need to formally
determine if the system is linear or not, you should be able to just look at it
(however you can use a formal method if you wish).

Turn in your plots for all of the instances where the small signal model is
valid (the system appears to be linear). Show your work in deriving the
small signal model, do not just look at the systemOn these graphs indicate
that your small signal model has the correct bias (DC point) and the correct
swing (v±).

Remember, if the system is linear and the input is a sinusoid, the output must
also be a sinusoid, not just periodic!

Spring 2009

System Mathematical

Model
Mathematical
Model
Linear? (Y/N)

Sounds/Looks
Linear?(Y/N)

Small Signal
Model
(if valid)

a 1()
2 ()

y t
x t

=
+

b 1() ()2
10

y t x t=
+

c
 2()

()1
10

1y t
x t

=
+

d () sin(2 ())y t x t=
e ()() sin

10
x t⎛ ⎞y t = ⎜ ⎟

⎝ ⎠

f () | () |y t x t=
g

()

10()
x t

y t e=

h () log(1.1y t = + ())x t
i 0.2()x t⎛ ⎞() 10.1

10
y t = +⎜ ⎟

⎝ ⎠

j

2() () ()y t ay t bx t+ =

Spring 2009

Appendix

Maple is often used for symbolically integrating a function. Sometimes, though,
what we really care about is the numerical value of the integral. Rather than
integrating symbolically, we might want to just use numerical integration to
evaluate the integral. Since we are going to be using Matlab a great deal in this
course, in this appendix we will learn to use one of Matlab’s built-in functions for
numerical integration. In order to efficiently use this function, we will learn how to
construct what are called anonymous functions. We will then use this information
to determine the average and rms value of a function. Some of this is going to
seem a bit strange at first, so just try and learn from the examples.

Numerical Integration in Matlab Let’s assume we want to numerically integrate
the following:

2 2

0
(2)I t

π
= +∫ dt

In order to do numerical integration in Matlab, we will use the built-in command
quadl. The arguments to quadl, e.g., the information passed to quadl, are

• A function which represents the integrand (the function which is being
integrated). Let’s call the integrand ()x t . This function must be written in
such a way that it returns the value of ()x t at each time t. Clearly here

 2() 2x t t= +
• The lower limit of integration, here that would be 0
• The upper limit of integration, here that would be 2π

Note that an optional fourth argument is the tolerance, which defaults to .
When the function value is very small, or the integration time is very small, you
will have to change this.

610−

Anonymous Functions Let’s assume we wanted to use Matlab to construct the
function . We can do this by creating what Matlab calls an
anonymous function. To do this, we type into Matlab

2() 2x t t= +

x = @(t) t.*t+2;

If we want the value of ()x t at 2t = , we just type x(2)

Hence, to evaluate the integral in Matlab we would type
2 2

0
(2)I t

π
= +∫ dt

x = @(t) t.*t+2;
I = quadl(x,0,2*pi)

Spring 2009

Note that it is important to define x before it is used by (passed to) quadl

Example 1 To numerically evaluate we could type
1

1
cos(2)tI e t−

−
= ∫ dt

x = @(t) exp(-t).*cos(2*t);
I = quadl(x,-1,1);

Example 2 To numerically evaluate we could type
1 | |

2
| | tI t e−

−
= ∫ dt

y = @(t) abs(t).*exp(-abs(t));
I = quadl(y,-2,1);

Integrating Products of Functions Sometimes we are going to want to
integrate the product of functions. While we could just multiply the functions
together, it is usually easier to let Matlab do it for us.

Let’s assume we want to evaluate the integral , and let’s assume

that we already have anonymous functions x and y. The function quadl needs to
be passed a function which is the product of x and y. To do this, we make a new
anonymous function z, using the following:

1

0
() ()I x t y t= ∫ dt

z = @(t) x(t).*y(t);

and then perform the integration

I = quadl(z,0,1)

An alternative is to write

I = quadl(@(t) x(t).*y(t),0,1);

 Example 3 To numerically evaluate we could type
1

1
cos(2)tI e t−

−
= ∫ dt

x = @(t) exp(-t)
y = @(t) cos(2*t);
z = @(t) x(t).*y(t);
I = quadl(z,-1,1);

or

I = quadl(@(t) x(t).*y(t),-1,1);

Spring 2009

Example 4 To numerically evaluate we could type
1 | |

2
| | tI t e−

−
= ∫ dt

x = @(t) abs(t);
y = @(t) exp(-abs(t));
z = @(t) x(t).*y(t);
I = quadl(z,-2,1);

or

I = quadl(@(t) x(t).*y(t),-2,1);

Spring 2009

