
ECE 300 
Signals and Systems 

Homework 3 
 
Due Date:  Thursday March 26, 2009 at the beginning of class 
 
Reading  Roberts pages 54-58, 115-140 
 
Problems  
 
1)  Consider the following mathematical models of systems: 
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Fill in the following table (Y or N for each question) for each system. You 
must justify your answers to receive credit. Assume  can be any possible 
value.  

t

 
Part Causal? Memoryless? Linear? Time Invariant? 

a     
b     
c     
d     
e     
f     
g     
h     

 

For part f you should show 0

0

3( ) 3( )
0( ) ( ) 2 ( )

t
t t t

t

y t y t e e x dλ λ λ− −= + ∫  in order to 

determine the system is or is not causal and has memory or is memoryless.  
 
For part g you should solve the DE first (see handout about integrating factors) 
and then determine whether the system is or is not causal and has memory or is 
memoryless.  
 
Remember that we always assume the initial conditions are zero and the initial 
time is −∞  when determining time-invariance and linearity. 
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2)  (Matlab Problem) The average value of a function x(t) is defined as 

1 ( )
b

a
x x t d

b a
= t∫  

−
 

and the root-mean-square (rms) value of a function is defined as 
 

21 ( )
b

rms a
x x t dt

b a
=

− ∫  

 
Read the Appendix (located at the end of this homework), then 

 
a) use Matlab to find the average and rms values of the function 2( )x t t=  for 

 1 1t− < <
 
b) use Matlab to find the average and rms values of the following functions 
 

( ) cos( ) 0
( ) cos( ) 0 2

( ) | | 1 1
( ) cos( ) 2 4

x t t t
x t t t

x t t t
x t t t t

π
π

= < <
= < <
= − < <

= − < <  
 
Hint: You will probably find the sqrt function useful. You should write a Matlab m-
file for this problem, and turn it in with your homework, as well as the answers. 

 
3) Matlab/Pre-Lab: Experimentation with Sound, Small Signal Models 
 
The MATLAB program linear_systems_and_sounds.m allows you to specify an 
input signal (lines 11-12) and system (line 24), and listen to how the sound 
changes as the signal passes through the system.  We will use the sounds 
produced to try to identify the systems as linear or nonlinear. Recall from class 
that a system is linear if and only if an input signal at frequency f  produces an 
output signal at frequency f . The phase angle and amplitude between the input 
and output may change, but the frequency cannot. Just think about how transfer 
functions affected periodic signals when you were using phasors to represent 
sinusoids- the transfer function could change the magnitude and phase but not 
the frequency of the input signal. Note that we can only hear sounds when the 
speaker is vibrating. 
 
a) Using the code as is (i.e. with y=x), investigate how the frequency of the 
sinusoidal input signal affects the sound of the signal.  Specifically, describe the 
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sound you hear for input signal frequencies f0 of  200, 1000,  and 5000  Hz.. Note 
that you need to run the program, wait for the input sound (and graph) to appear, 
then hit enter and you will hear the output sound and see the output plotted in the 
lower panel. 
 
b) Now change the system so the output is zero, i.e., y = 0*x (this will make sure 
the y vector is the correct length). What do you hear for the system output, if 
anything? 
 
c) Now change the system so the output is y=0*x+10; What do you hear? How 
fast (at what frequency) is the speaker vibrating?  
 
d) For each of the mathematical models of systems in the following table, 
assume x is a periodic signal with frequency 200 Hz. For each of these models, 
determine if the mathematical model of the system is linear or not, and if you 
would classify the system models as linear or not based on both listening to and 
looking at the input and output. Discrete-time solutions for model (j) is included in 
the code, and is commented out. Uncomment the correct lines when you need to 
run these models. 
 
e) For many system, such as transistors, we are really interested in small signal 
models. For these systems we only care about the behavior of the system about 
a set or bias point for an input with a small amplitude. For ( )x t small, we can use a 
Taylor series approximation of around x(t) = 0 of the form ( )y x
 

0( ) ( )y x y x tν≈ +  
 

where  and 0y ν are determined by the Taylor series expansion of  about the 
point . If we subtract the bias point ( ) from both sides of the equation and 
rename variables we have 

( )y x
0x = 0y

 
0( ) ( ) ( )y x y y x x tν− ≡ Δ =  

 
This is now a description of a linear system between input ( )x t

( )
and output . 

This relationship is only approximately linear if the input
( )y xΔ

x t is sufficiently small 
that the Taylor series approximation is valid. 
 
For the systems that are mathematically nonlinear, but appeared/sounded linear, 
determine the small signal linear approximation, that is, determine  and 0y ν . 
 
Note that our input amplitude is 1, and hence something like /10z x= would be 
considered small. The following formula’s for Taylor series about the point 0z =
may be helpful: 
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Taylor series (general form) 
0

( ) (0)
z

dff z f z
dz =

≈ +  

 
   [ ] 1( ) c c cy z a bz a ca bz−= + ≈ +     ( ) sin( )y z az az= ≈   

( ) log( )  log( ) y z a bz a= + =  + bz
a b+

( ) 1azy z e az= ≈ +  

 
(Note that log here means natural log, typing log in Matlab takes the natural log 
of the function.) 
 
As a check, for those systems where the small signal model is valid for this 
particular input signal , if you look at the plots from linear_systems_and 
_sounds.m, the output signal should be centered at oy and should oscillate 
between oy ν+ and oy ν−  (or reasonably close to this) with the same frequency 
as the input signal. 

 
Don’t forget that if you want to process element by element, you may need to use 
.*, ./, or .^ in Matlab 
 
Fill-in and turn in the Table on the following page. You do not need to formally 
determine if the system is linear or not, you should be able to just look at it 
(however you can use a formal method if you wish).  
 
Turn in your plots for all of the instances where the small signal model is 
valid (the system appears to be linear). Show your work in deriving the 
small signal model, do not just look at the systemOn these graphs indicate 
that your small signal model has the correct bias (DC point) and the correct 
swing  ( v± ). 
  
Remember, if the system is linear and the input is a sinusoid, the output must 
also be a sinusoid, not just periodic! 
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System Mathematical  

Model 
Mathematical 
Model 
Linear? (Y/N)

Sounds/Looks  
Linear?(Y/N) 

Small Signal 
Model 
(if valid) 

a 1( )
2 ( )

y t
x t

=
+

 
   

b 1( ) ( )2
10

y t x t=
+

 
   

c 
   2( )

( )1
10

1y t
x t

=
+

 
   

d ( ) sin(2 ( ))y t x t=     
e ( )( ) sin

10
x t⎛ ⎞y t = ⎜ ⎟

⎝ ⎠
 

   

f ( ) | ( ) |y t x t=     
g 

 
( )

10( )
x t

y t e=  
   

h ( ) log(1.1y t = + ( ))x t     
i 0.2( )x t⎛ ⎞( ) 10.1

10
y t = +⎜ ⎟

⎝ ⎠
 

   

j  
 

2( ) ( ) ( )y t ay t bx t+ =     
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Appendix 
 
Maple is often used for symbolically integrating a function. Sometimes, though, 
what we really care about is the numerical value of the integral. Rather than 
integrating symbolically, we might want to just use numerical integration to 
evaluate the integral. Since we are going to be using Matlab a great deal in this 
course, in this appendix we will learn to use one of Matlab’s built-in functions for 
numerical integration. In order to efficiently use this function, we will learn how to 
construct what are called anonymous functions. We will then use this information 
to determine the average and rms value of a function. Some of this is going to 
seem a bit strange at first, so just try and learn from the examples. 
 
Numerical Integration in Matlab  Let’s assume we want to numerically integrate 
the following: 

2 2

0
( 2)I t

π
= +∫ dt  

 
In order to do numerical integration in Matlab, we will use the built-in command 
quadl. The arguments to quadl, e.g., the information passed to quadl, are 
 

• A function which represents the integrand (the function which is being 
integrated). Let’s call the integrand ( )x t . This function must be written in 
such a way that it returns the value of ( )x t  at each time t.  Clearly here 

 2( ) 2x t t= +
• The lower limit of integration, here that would be 0 
• The upper limit of integration, here that would be 2π  

 
Note that an optional fourth argument is the tolerance, which defaults to . 
When the function value is very small, or the integration time is very small, you 
will have to change this. 

610−

 
Anonymous Functions Let’s assume we wanted to use Matlab to construct the 
function . We can do this by creating what Matlab calls an 
anonymous function. To do this, we type into Matlab 

2( ) 2x t t= +

 
x = @(t) t.*t+2; 
 
If we want the value of ( )x t  at 2t = , we just type x(2) 
 

Hence, to evaluate the integral  in Matlab we would type  
2 2

0
( 2)I t

π
= +∫ dt

 
x = @(t) t.*t+2; 
I = quadl(x,0,2*pi) 
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Note that it is important to define x before it is used by (passed to) quadl 
 

Example 1 To numerically evaluate  we could type 
1

1
cos(2 )tI e t−

−
= ∫ dt

 
x = @(t) exp(-t).*cos(2*t); 
I = quadl(x,-1,1); 
 

Example 2 To numerically evaluate  we could  type 
1 | |

2
| | tI t e−

−
= ∫ dt

 
y = @(t) abs(t).*exp(-abs(t)); 
I = quadl(y,-2,1); 
 
 
Integrating Products of Functions Sometimes we are going to want to 
integrate the product of functions. While we could just multiply the functions 
together, it is usually easier to let Matlab do it for us.  
 

Let’s assume we want to evaluate the integral , and let’s assume 

that we already have anonymous functions x and y. The function quadl needs to 
be passed a function which is the product of x and y. To do this, we make a new 
anonymous function z, using the following: 

1

0
( ) ( )I x t y t= ∫ dt

 
z = @(t) x(t).*y(t); 
 
and then perform the integration  
 
I = quadl(z,0,1) 
 
An alternative is to write 
 
I = quadl(@(t) x(t).*y(t),0,1); 
 
 

 Example 3 To numerically evaluate  we could type 
1

1
cos(2 )tI e t−

−
= ∫ dt

 
x = @(t) exp(-t) 
y = @(t) cos(2*t); 
z = @(t) x(t).*y(t); 
I = quadl(z,-1,1); 
 
or 
 
I = quadl(@(t) x(t).*y(t),-1,1); 
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Example 4 To numerically evaluate  we could  type 
1 | |

2
| | tI t e−

−
= ∫ dt

 
x = @(t) abs(t); 
y = @(t) exp(-abs(t)); 
z = @(t) x(t).*y(t); 
I = quadl(z,-2,1); 
 
or 
 
I = quadl(@(t) x(t).*y(t),-2,1); 
 

Spring 2009 


