Name CM

ECE 300
Signals and Systems

Exam 2
24 April, 2008

NAME %(NR%

This exam is closed-book in nature. You may use a calculator for simple
calculations, but not for things like integrals. You must show all of your work.
Credit will not be given for work not shown.
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Exam 2 Total Score: /100
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1. (15 points) Assume x(¢) and y(¢) are periodic signal with Fourier series
representations, and

x()= 2, X" y()= Ve
k k

Assume also that x(¢) and y(¢) are related by the differential equation
y(t=a)+2y(t) = x(1)
a) Write the Y, in terms of the X,

b) If x(¢) is the input to an LTI system with transfer function H (j®@) with output y(7),
what is the transfer function H(jo) ?
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2. (15 points) Assume we are computing the Fourier series coefficients, and after
evaluating the integrals we end up with
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Write X, in terms of the sinc function.
 3E 2K ~)¥
X - C’) ‘! ') E e E
K 7 - = 7 = 5
s 3\4
26
- ~Qe/] gm(&i\ -2 e0 Sth (‘T /r)




Name 50 /(/ 717 m CM

3. (20 points) Assume x(¢) is a periodic signal with a Fourier series representation, and
the following graph displays the spectrum of x(z) . Assume the fundamental frequency is
o, =4 rad/sec. Note that the phase is in radians, and all phases are multiples of 1

radian.
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a) What is the average value of x(1)? Y = Cp = \ ZS,OO :{\D

b) What is the average power in x(7) ? \a = z\ CF\
Zz -

¢) What is the average power in the second harmonic of x(7)? Q\Cl\ -2 @

¢) Write x(¢) in terms of smes and cosines.
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4. (25 points) Assume x(¢) is a periodic signal with Fourier series representation

x() = 2+z 1+]k e

Assume x(¢) is the input to an LTI system with transfer function
3 lw|<3

H(jw)=14¢ 0 3<|w|<11
0 lo|>11

Determine the steady state output of the system, y(¢) . Your answer must be written in

terms of sines and cosines, not complex exponentials. Your answer must also be in either
degrees or radians, but not a mixture.
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5. (25 points) Graphical Convolution and System Properties

Consider a linear time invariant system with impulse response given by

h(t) = —sin(zt) [u(t +1)—u(t - 2)]
and input

x(f) = u(t =) —u(t —2)— 2u(t - 3) + 2u(t —5)

shown below
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a) Is this system causal? Why or why not? "\ *Q (+) #0 %3( te o
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b) Is this system BIBO stable? Why or why not? € 5 g \

— el



Name éy{ ,;,J’ " CM

¢) Using graphical convolution, determine the output y(¢) = h(z) * x(¢)

Specifically, you must

a) Flip and slide 4(¢) , NOT x(t)
b) Show graphs displaying both A(#— 1) and x(A) for each region of interest

c¢) Determine the range of ¢ for which each part of your solution is valid
d) Set up any necessary integrals to compute y(¢) . Your integrals must be complete, in

that they cannot contain the symbols x(A1) or A(z — 1) but must contain the actual

functions.
e) DO NOT EVALUATE THE INTEGRALS!!

Hints: (1) Pay attention to the width of h(t)
(2) 1t is the endpoints of h(t) that matter the most
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