ECE 300
Signals and Systems
Homework 7
Due Date: Tuesday April 24 at the beginning of class

Exam 2, Thursday April 26

Problems:

1. A periodic signal $x(t)$ is the input to an LTI system with output $y(t)$. The signal $x(t)$ has period 2 seconds, and is given over one period as

$$
x(t)=e^{-t} \quad 0<t<2
$$

$x(t)$ has the Fourier series representation

$$
x(t)=\sum_{k} \frac{0.4323}{1+j k \pi} e^{j k \pi t}
$$

The system is an ideal lowpass filter that eliminates all signals with frequency content higher than 1.25 Hz .
a) Find the average power in $x(t)$.
b) Determine an expression for the output, $y(t)$. Your expression for $y(t)$ must be real.
c) Determine the average power in $y(t)$.
d) Plot the spectrum (magnitude and phase) for $x(t)$. Include the DC through second harmonic. Accurately label your plot.
2. Assume $\quad x(t)=t^{2} \quad-\pi \leq t \leq \pi$ with Fourier Series representation

$$
x(t)=\sum_{k} a_{k} e^{j k t}
$$

where

$$
a_{k}=\left\{\begin{array}{cc}
\frac{\pi^{2}}{3} & k=0 \\
\frac{2(-1)^{k}}{k^{2}} & k \neq 0
\end{array}\right.
$$

a) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies outside the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$? (Note: your answers must be real, no $e^{j a}$ terms.)
b) Assume $x(t)$ is the input to a system that eliminates all signals with frequencies in the range 0.5 to 0.7 Hz . What is the output of the system $y(t)$ and what fraction of the average power in $x(t)$ is in $y(t)$?
3. K \& H, Problem 5.1. Use the example we did in class to get the Fourier series coefficients for part c.
4. K \& H, Problem 5.3.
5. $\mathrm{K} \& \mathrm{H}$, Problem 5.12. Note that $y(t)=x(t)-x(t-1)$. You need to write c_{k}^{y} in terms of c_{k}^{x}.
6. K \& H, Problme 5.13.
7. The output of a LTI system, $y(t)$, has the following spectrum shown on the left, while the system transfer function, $H\left(k \omega_{o}\right)$, has the spectrum shown on the right. Assume all angles are multiples of 45 degrees.

a) Determine (sketch) the spectrum (magnitude and phase) of the input to the system, $x(t)$.
b) If $x(t)$ has the fundamental period $T=2$ seconds, determine an analytical expression for $x(t)$ in terms of sine, cosines, and constants.

