ECE 300 Signals and Systems Homework 10

<u>Due Date:</u> <u>Wednesday</u> May 16 at 7 PM (beginning of Q/A) Note: Exam 3 Thursday May 17, Lab Practical Friday May 18

Note: Use the Fourier transform table given out in class.

Problems

1. Find the fraction of the total signal energy (as a percentage) contained between 100 and 300 Hz in the signal x(t) given below:

$$x(t) = 5\operatorname{sinc}\left(\frac{t}{0.002}\right) + 5\operatorname{sinc}\left(\frac{t}{0.001}\right) \quad \text{Answer 56\%}$$

2. Using the <u>duality property</u>, find the corresponding Fourier transform for the following: **a**) $g(t) = \operatorname{sinc}^2(Bt)$ **b**) $g(t) = \operatorname{sinc}(Wt)$ **c**) $g(t) = \delta(t)$ **d**) $g(t) = \cos(\omega_0 t)$ <u>Do</u> <u>not</u> just look up the pairs from the table (though you can use any other pairs except the one you are trying to find).

- 3. K & H, Problem 5.16 (**a**, **b**, **c** only)
- 4. Consider a linear time invariant system with transfer function given by

$$H(\omega) = \begin{cases} 5e^{-j2\omega} & |\omega| \le 2\\ 0 & else \end{cases}$$

with input $x(t) = \frac{8}{\pi} \operatorname{sinc}^2\left(\frac{2(t-1)}{\pi}\right)$. The output of the system is $y(t)$.

- a) Determine $X(\omega)$.
- b) Sketch the spectrum of $X(\omega)$ (magnitude and phase) accurately labeling the axes and important points.
- c) Sketch the spectrum of $H(\omega)$ (magnitude and phase) accurately labeling the axes and important points.
- d) Determine y(t), the output of the system.

Answer
$$y(t) = \frac{20}{\pi} \operatorname{sinc} \left[\frac{2}{\pi} (t-3) \right] + \frac{10}{\pi} \operatorname{sinc}^2 \left[\frac{1}{\pi} (t-3) \right]$$

5. Determine the transfer function $H(\omega)$ that would produce the following input /output relationships. Simplify your answers as much as possible.

a)
$$y(t) = a\dot{x}(t-b)$$

b)
$$y(t) = ax(t+b) + ax(t-b)$$

C) $\dot{y}(t) = x(t) * e^{-t}u(t-b)$