
ROSE-HULMAN INSTITUTE OF TECHNOLOGY
Department of Electrical and Computer Engineering

EC 300 Signals and Systems Spring 2007

MATLAB Scripts and Functions

Lab 2
Mark A. Yoder and Bruce A. Ferguson

Prelab: none
Objectives
The purpose of this lab is to learn to write program files in MATLAB. While working through
this lab you should learn many of the commands we will be using throughout the quarter. In
addition, you will learn to create MATLAB programs, which we will use, reuse, and modify
throughout the term. Use the help command often and early. Specifically, you should achieve
the following:

• Learn the purpose of MATLAB scripts and functions (aka “m-files”)
• Learn to create a script file for performing repeated operations
• Learn to properly graph data from various sources

Notes on Using MATLAB
MATLAB can be used in two different ways – through the command line interface and using
MATLAB scripts. This second lab focuses on the use of MATLAB programs.

The second method of interfacing is by writing MATLAB programs called scripts or “m-files”.
These are programs written in MATLAB’s command language, the same as is used in the
command window. In the last lab, you typed a sequence of commands in a specific order to
achieve some more complex result (such as plotting sinusoids). Each command had a specific
purpose, and the order was important. However, one big problem with the method used in that
lab was that you could not save the sequence of commands that you used. MATLAB programs
allow you to save a sequence of commands for reuse and modification.

The usual structure of a MATLAB program is similar to that of other programming languages: a
main program is written (filename.m), and this program can call functions saved in other files
(function_name.m). The main program is where you organize your work into a coherent flow.
Functions are used to program repeated command sequences, so that your main program can be
neater and smaller. Every command you type in the command line interface window is actually a
MATLAB function. Both the main program and functions are called m-files, but they have
slightly different structures.

It is suggested that you use the MATLAB script editor to create and modify your m-files. The
editor can be accessed from inside MATLAB (“File → New → M-File”). Be sure to save the file
before you run it. If you do not, MATLAB will use the previous version of the file which it has
stored in memory. Simply type the filename (without the “.m”) from the command line to run
the program. MATLAB references the script (program) only by its filename, so choose a name
that has meaning. (Seventeen files named “testx” make for a confusing lab exercise!)

 Page 1 of 7

EC 300 Signals and Systems Spring 2007

The files you create and save are stored in the directory shown in the “current directory”
window just above the command window. Be sure to create a directory for your ECE 300
labwork, and navigate to that directory using the browse button (ellipses - “…”) to the right of
the current directory window.

MATLAB can access any file stored in its path variable. The path is a list of directories that
MATLAB has been told to look into to find commands and files. When you type a command
burgerflip in the command window, MATLAB looks through its path to find a file named
“burgerflip.m”, and then executes it.

Finally, when you save a function, MATLAB will know the function only by its filename. Even if
your function definition in the first line of the m-file has something different listed as the
command name, the filename in which you store the function is MATLAB’s official reference. So
when you call the function from either the command window or an m-file, you must use the
name of the file the function is stored in. It is obviously good practice to make both the file
name and the function definition line use the same name.

1. Script file basics

 (a) Use the MATLAB editor (“File → New → M-File”) to create a program file called

sintest.m containing the following lines:

t = -2:0.05:3;
x = sin(2*pi*0.789*t); % plot a sinusoid
plot(t,x), grid on
title(‘Test Plot of Sinusoid’)
xlabel(‘Time (s)’);

Save the file. (MATLAB cannot access your programs or functions until they are saved from
the editor.)

Creating a program file in this fashion allows for easy storage of a number of commands as a
MATLAB program. The program file is also called an M-File or a script. The program will be
stored in the current directory indicated in the MATLAB window.

Run your function from MATLAB by typing its name (sintest) at the MATLAB prompt
(note that sintest must reside in MATLAB’s search path). Verify that the program
produces the expected results.

(b) You have now created your first MATLAB program! Type type sintest at the command
prompt to see the file you have created.

 (c) Edit sintest.m to add a line containing the “hold on” function (type help hold for
more information), followed by another plot command to add a plot of
0.5*cos(2*pi*0.789*t) to the plot created above. Add a final line to your program

 Page 2 of 7

EC 300 Signals and Systems Spring 2007

containing “hold off”. Note that you must save sintest.m in order for MATLAB to access
the updated program.

Instructor Verification (see last page)

2. MATLAB Functions

MATLAB commands typed at the command line interface are simply functions. In this exercise
we will learn to create various types of functions. A function is differentiated from an m-file in
that data or information can be passed to the function in the form or arguments.

 (a) Create a simple function with no arguments. Type the following lines and save them in a

file called greeting.m. Save the file, and test it at the command line. This function is
just a small program similar to your main program, with one major difference.

 function greeting
 disp (‘Hello world!’)
 test = 3.14159

Note that the first line of the function file begins with the word function followed by the
function name. This first line differentiates a function from a script (m-file) – a script does
not contain the function line. It is important that you make the function name the
same as the filename you save it in.

An important difference between a script and a function is how they handle “local variables”.
For example, note that running your sintest script causes the variables t and x to appear
in the base workspace (see them listed in the upper left pane of the MATLAB window), but
your greeting function does not cause test to appear there, even though it prints to the
command window.

This type of function simply performs an operation. It does not have any inputs, and
produces no outputs. Next, a function with an input is investigated.

 (b) Create a simple function of one argument. Some functions are programs which require

inputs. The inputs to a function are called arguments. Functions such as cos or abs have a
single argument. Other functions have multiple arguments. The following template is
provided for you to create your own function file. Your function should

1. accept one argument, either a string in quotes (like ‘c’) or a number
2. determine if it’s a number
3. if a number is it even, odd, or neither (e.g. non-integer)
4. if a character, indicate this
5. The function should print “The input is even”, “The input is odd”, “The input is not an

integer”, or “The input is not a number”

 Page 3 of 7

EC 300 Signals and Systems Spring 2007

 The if statement and mod command will be useful for this operation. You probably want to
use the help command to lookup the built in commands if and isnumeric.

 function even_odd(input)
 % Insert comments here describing how function is to be used
 result = mod(???);
 if (result==??)

 Experiment with your new function by typing even_odd(3) etc. at the command prompt.

This function has a single argument passed to it, in this case the number 3. Now experiment
with different types of arguments to be sure your function is working correctly. While
MATLAB is evaluating the function, the argument value is assigned to the local variable
input. The variable input does not have meaning outside of the function. You have now
learned how to pass arguments to a function.

Instructor Verification (see last page)

 (c) Create a simple function of one argument, returning two values. A third type of function

returns a value to the command interface or program calling the function. The function
definition line has a different form from the examples shown above. A function definition
line is provided below to get your started.

Create a function which accepts a numeric input and evaluates how many times the number two
goes into that input. The function should return the number of times 2 goes into the number and
the remainder to the main program in the form of two variables: two_fac and remainder.
For example, if the input is 33, the result should be 16 and 1. The returned value two_fac is
the result of the integer division of input by 2.

You should be able to perform this operation using only two command lines in the function. The
function floor will prove helpful.

 function [two_fac,remainder] = two_div(input)
 % Insert comments here describing how function is to be used
 % Insert function commands

The function definition line contains a number of important elements. First, there is the familiar
function definition, two_div, (which should be the same as the filename it is saved in). A
single argument (input) is passed to the function from the main program. There are also two
defined outputs (or returned values) of the function (two_fac and remainder). These are the
variables in the square brackets.

To call this function, enter the the following line at the command prompt:

 [two_fac,remainder] = two_div(input)
 test = two_fac*2 + remainder

 Page 4 of 7

EC 300 Signals and Systems Spring 2007

The first line tells MATLAB to call the function two_div with the argument input, and place
the returned values into the variables two_fac and remainder. The second line verifies the
returned values by calculating a variable test, which should be the same as the value store in
input. Test your function to be sure it is operating properly. Demonstrate this to your
instructor.

Instructor Verification (see last page)

3. Presenting Data Graphically

Often in lab you will have three types of data that you will want to plot on the same plot,
Analytic (from a mathematical analysis), Simulation (from MATLAB, SIMULINK or PSpice), and
Lab Data (measured in lab). Suppose a process is to be modeled, and the model verified. Your
analysis says the data should fit:

x(t) = sin(2π440t + π/2)

Next suppose you run a simulation of the process being modeled, and the result of this
simulation is the data in the file “simdata.txt” available on the course webpage. Within the file,
the first line is a comment line. In the subsequent lines, the first value is x, the second is the time
(in seconds) that x was measured. Type help importdata to learn how to read in data from
this type of file.

Finally you measure the following data in lab:

Lab Data Time (ms)
+1.07 -4.17
-0.38 -3.55
-0.82 -2.92
+0.74 -2.30
+0.72 -1.67
-0.72 -1.05

 (a) Create a single plot showing all of your data using a MATLAB script. Your script should

perform the steps listed below. Save your script as dataplot.m.

 (b) Read in the data from the simulation results file, and store the data in the array test. Note

that the array test contains two vectors. We will access the two vectors by breaking test
into x and t arrays using:

 xxSim = test(:,1); % Be sure you understand this notation!
 ttSim = test(:,2);

 Page 5 of 7

EC 300 Signals and Systems Spring 2007

 (c) Use the vector ttSim to evaluate the equation at the correct times and store the results in an
array called, e.g., xxAna (for Analytic).

 (d) Store the lab data in two arrays, e.g. xxLab and ttLab, by typing it in by hand.

 (e) Finally, plot all three on the same plot using:
 plot(ttSim, xxAna, ttSim, xxSim, '--', ttLab, xxLab, 'x')

 (f) Add a legend using:
 legend('Analytic', 'Simulation', 'Lab Data');

(g)Label your plot using xlabel, ylabel, and title. (You can get π by entering “\pi”.)

Put your name in the title.

 (h) Modify your time vectors so that your plot looks exactly like the plot below:

Note the time axis is in ms, not in seconds!

Print out this plot to turn in you’re your laboratory worksheet.

Instructor Verification (see last page)

Note: We have shown you the above format because it is an industry standard to
plot Analytic data as a solid line, Simulation data as a dashed line, and to plot
individual Lab Data as points, not as a continuous line. You are expected to
follow this convention in later labs and courses.

 Page 6 of 7

EC 300 Signals and Systems Spring 2007

Lab 02 Introduction to MATLAB
Instructor Verification Sheet

Turn in this page as well as plot for parts 1(c) and 3(h)

Name ___ Date of Lab: __________________

Part 1(c) Present you plot.

Verified: ___ Date/Time: __________________

Part 2(b)
Verified: ___ Date/Time: __________________

Part 2(c)
Verified: ___ Date/Time: __________________

Part 3(h) Present your plot.
Verified: ___ Date/Time: __________________

 Page 7 of 7

